Search results for "second"

showing 10 items of 3671 documents

Two-dimensional Banach spaces with polynomial numerical index zero

2009

We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.

/dk/atira/pure/subjectarea/asjc/2600/2608/dk/atira/pure/subjectarea/asjc/2600/2607Eberlein–Šmulian theoremBanach manifoldFinite-rank operatorPolynomialMatrix polynomialFOS: MathematicsDiscrete Mathematics and Combinatorics/dk/atira/pure/subjectarea/asjc/2600/2602C0-semigroupLp spaceMathematicsMathematics::Functional AnalysisNumerical AnalysisBanach spaceAlgebra and Number TheoryMathematical analysisFunctional Analysis (math.FA)Mathematics - Functional Analysis46B04 (Primary) 46B20 46G25 47A12 (Secondary)Polynomial numerical indexInterpolation space/dk/atira/pure/subjectarea/asjc/2600/2612Geometry and TopologyNumerical rangeMonic polynomialLinear Algebra and its Applications
researchProduct

Injection and ultrafast regeneration in dye-sensitized solar cells

2014

Injection of an electron from the excited dye molecule to the semiconductor is the initial charge separation step in dye-sensitized solar cells (DSC's). Though the dynamics of the forward injection process has been widely studied, the results reported so far are controversial, especially for complete DSC's. In this work, the electron injection in titanium dioxide (TiO2) films sensitized with ruthenium bipyridyl dyes N3 and N719 was studied both in neat solvent and in a typical iodide/triiodide (I-/I3 -) DSC electrolyte. Transient absorption (TA) spectroscopy was used to monitor both the formation of the oxidized dye and the arrival of injected electrons to the conduction band of TiO2. Emiss…

/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyta221Analytical chemistrychemistry.chemical_elementElectrolyteNanosecondPhotochemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsRutheniumDye-sensitized solar cellchemistry.chemical_compoundGeneral EnergychemistryPicosecondTitanium dioxideUltrafast laser spectroscopySDG 7 - Affordable and Clean EnergyPhysical and Theoretical ChemistryTriiodideta116
researchProduct

Elliptic equations and maps of bounded length distortion

1988

On considere l'equation elliptique d'ordre 2: L(u)=Σ i,f=1 n ∂ 1 (a ij ∂ ju )=0 ou les coefficients a ij sont des fonctions C 1 dans un domaine D de R n

010101 applied mathematicsDistortion (mathematics)Elliptic curvePartial differential equationGeneral MathematicsBounded function010102 general mathematicsSecond order equationMathematical analysis0101 mathematics01 natural sciencesMathematicsMathematische Annalen
researchProduct

Vertical versus horizontal Sobolev spaces

2020

Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev sp…

010102 general mathematicsMetric Geometry (math.MG)Function (mathematics)Lipschitz continuity01 natural sciencesFunctional Analysis (math.FA)Fractional calculusSobolev spaceCombinatoricsMathematics - Functional AnalysisMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesVertical directionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupOrder (group theory)010307 mathematical physics0101 mathematics46E35 (Primary) 26A33 35R03 43A15 (Secondary)AnalysisMathematics
researchProduct

Dielectric response of BaTiO3 electronic states under AC fields via microsecond time-resolved X-ray absorption spectroscopy

2021

Abstract For the first time, the dielectric response of a BaTiO 3 thin film under an AC electric field is investigated using microsecond time-resolved X-ray absorption spectroscopy at the Ti K-edge in order to clarify correlated contributions of each constituent atom on the electronic states. Intensities of the pre-edge e g peak and shoulder structure just below the main edge increase with an increase in the amplitude of the applied electric field, whereas that of the main peak decreases in an opposite manner. Based on the multiple scattering theory, the increase and decrease of the e g and main peaks are simulated for different Ti off-center displacements. Our results indicate that these s…

010302 applied physicsCondensed Matter - Materials ScienceX-ray absorption spectroscopyMaterials sciencePolymers and PlasticsAbsorption spectroscopyMetals and AlloysMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyElectronic structure021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityMolecular physicsElectronic Optical and Magnetic MaterialsIonMicrosecondElectric field0103 physical sciencesAtomCeramics and Composites0210 nano-technologyActa Materialia
researchProduct

Temperature dependence of luminescence of LiF crystals doped with different metal oxides

2020

Photoluminescence and cathodoluminescence of LiF crystals doped with different binary metal oxides were measured in the wide temperature range of 50-300 K and time interval of 10−8−10−1 s after the nanosecond electron excitation pulse. Both as-grown those and crystals irradiated by an electron beam in range of absorbed dose up to 103 Gy were studied. It is shown that spectral-kinetic characteristics of the luminescence depend on the absorbed dose (type of created/accumulated color centers), the irradiation temperature, the concentration of hydroxyl, which promotes incorporation of the MeO complex (Me: W, Ti, Fe, Li) into the crystal lattice, and the cation-dopants.

010302 applied physicsMaterials sciencePhotoluminescencePhysics and Astronomy (miscellaneous)DopingAnalytical chemistryGeneral Physics and AstronomyCathodoluminescenceNanosecondAtmospheric temperature range01 natural sciencesElectron excitation0103 physical sciencesElectron beam processing010306 general physicsLuminescenceLow Temperature Physics
researchProduct

Fluence effect on ion-implanted As diffusion in relaxed SiGe

2005

A systematic study on the fluence (5 × 108 − 4 × 1014 cm−2) dependence of ion-implanted As diffusion in relaxed Si1 − xGex alloys (with x = 0.2, 0.35 and 0.5) and silicon has been performed by the modified radiotracer and secondary ion mass spectrometry techniques. With fluences above 4 × 1011 cm−2 a clear fluence-dependent enhancement in arsenic diffusion was noted for Si1 − xGex. In case of arsenic-implanted silicon such fluence dependency was not observed. This can be assigned to enhanced implantation-induced damage formation and more deficient radiation damage recovery of SiGe.

010302 applied physicsMaterials scienceSiliconAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesFluenceIonSecondary ion mass spectrometrychemistry0103 physical sciencesRadiation damageDiffusion (business)0210 nano-technologyArsenicEurophysics Letters
researchProduct

A New Multipactor Effect Model for Dielectric-Loaded Rectangular Waveguides

2019

Multipactor is an electron discharge that may appear in particle accelerators and microwave devices such as filters, multiplexers, and RF satellite payloads in satellite on-board equipment under vacuum conditions. When some resonance conditions are satisfied, secondary electrons get synchronized with the RF fields, and the electron population inside the device grows exponentially leading to a multipactor discharge. This multipactor discharge has some negative effects that degrade the device performance: increase of signal noise and reflected power, heating of the device walls, outgassing, detuning of resonant cavities, and even the partial or total destruction of the component. The main aim…

010302 applied physicsMultipactor effectMaterials sciencebusiness.industryParticle acceleratorElectron01 natural sciencesSignalSecondary electrons010305 fluids & plasmaslaw.inventionOutgassingOpticslaw0103 physical sciencesbusinessNoise (radio)Microwave2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)
researchProduct

Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models

2018

[EN] Secondary electron emission has an important role on the triggering of the multipactor effect; therefore, its study and characterization are essential in radio-frequency waveguide applications. In this paper, we propose a theoretical model, based on equivalent circuit models, to properly understand charging and discharging processes that occur in dielectric samples under electron irradiation for secondary electron emission characterization. Experimental results obtained for Pt, Si, GaS, and Teflon samples are presented to verify the accuracy of the proposed model. Good agreement between theory and experiments has been found.

010302 applied physicsMultipactor effectNuclear and High Energy PhysicsWaveguide (electromagnetism)Materials scienceDielectricCondensed Matter Physics01 natural sciencesSecondary electrons010305 fluids & plasmasCharacterization (materials science)Computational physicsSecondary electron emission (SEE)Secondary emission0103 physical sciencesRadio frequencyTEORIA DE LA SEÑAL Y COMUNICACIONESElectron beam processingEquivalent circuitMultipactor effectSecondary electron yield
researchProduct

Annealing behaviour of aluminium-implanted InP

2000

The annealing behaviour of aluminium has been studied in single-crystal InP implanted with 40 and 120 keV 27Al+ ions. The implantation doses were 1 x 1015 and 1 x 1016 cm-2. The aluminium concentration profiles were determined by two techniques, Secondary ion mass spectrometry (SIMS) and the nuclear resonance broadening technique (NRB) which was used for checking purposes. The usability of the SIMS technique for profiling Al rich layers was studied. Significant inconsistencies were observed in the SIMS profiles with the high dose implanted samples. The 120 keV, 1 x 1016 cm-2 implanted samples were subject to annealing in argon atmosphere in the temperature range 380–600°C. Redistribution an…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceAnnealing (metallurgy)Analytical chemistrychemistry.chemical_element02 engineering and technologyActivation energyAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciencesSpectral lineIonSecondary ion mass spectrometryIon implantationchemistryAluminium0103 physical sciences0210 nano-technologyInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct