Search results for "soft"

showing 10 items of 9809 documents

Enabling partially reconfigurable IP cores parameterisation and integration using MARTE and IP-XACT

2012

International audience; This paper presents a framework which facilitates the parameterization and integration of IP cores into partially reconfigurable SoC platforms, departing from a high-level of abstraction. The approach is based in a Model-Driven Engineering (MDE) methodology, which exploits two widely used standards for Systems-on-Chip specification, MARTE and IP-XACT. The presented work deals with the deployment level of the MDE approach, in which the abstract components of the platform are first linked to the lower level IP-XACT counterparts. At this phase, information for parameterization and integration is readily available, and a synthesizable model can be obtained from the gener…

010302 applied physicsEngineeringExploitbusiness.industryEmphasis (telecommunications)02 engineering and technology01 natural sciences020202 computer hardware & architecture[INFO.INFO-ES] Computer Science [cs]/Embedded SystemsSoftware deploymentEmbedded systemIP-XACT0103 physical sciences0202 electrical engineering electronic engineering information engineeringSystem on a chip[INFO.INFO-ES]Computer Science [cs]/Embedded Systems[ INFO.INFO-ES ] Computer Science [cs]/Embedded SystemsbusinessField-programmable gate arrayAbstraction (linguistics)
researchProduct

Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics

2019

Abstract Colloidal solutions of magnetic nanoparticles are usually employed when the fluidity and magnetic properties are required at the same time, either in technical or biomedical applications. However, when the magnetic size of the nanoparticles is large enough (>12–15 nm) the colloid may form an equilibrium structure with or without the external magnetic field, which can significantly influence its rheology. Using multi-particle collision dynamics we study the internal structure and viscosity of the magnetic colloids at varying magnitudes of the externally applied field. We show a generalized structural behavior across all studied regimes and an appreciable increase of flow resistance …

010302 applied physicsFerrofluidMaterials scienceField (physics)Field effect02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldCondensed Matter::Soft Condensed MatterViscosityRheologyChemical physics0103 physical sciencesMagnetic nanoparticlesMulti-particle collision dynamics0210 nano-technologyJournal of Magnetism and Magnetic Materials
researchProduct

Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace

2018

The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.

010302 applied physicsMaterials scienceScale (ratio)Mechanical engineeringCrystal growth02 engineering and technology021001 nanoscience & nanotechnologycomputer.software_genre01 natural sciencesSimulation softwareMonocrystalline siliconScientific method0103 physical sciencesTransient (oscillation)0210 nano-technologyMaterial propertiescomputerIOP Conference Series: Materials Science and Engineering
researchProduct

Mathematical modelling of the feed rod shape in floating zone silicon crystal growth

2017

Abstract A three-dimensional (3D) transient multi-physical model of the feed rod melting in the floating zone (FZ) silicon single-crystal growth process is presented. Coupled temperature, electromagnetic (EM), and melt film simulations are performed for a 4 inch FZ system, and the time evolution of the open melting front is studied. The 3D model uses phase boundaries and parameters from a converged solution of a quasi-stationary axisymmetric (2D) model of the FZ system as initial conditions for the time dependent simulations. A parameter study with different feed rod rotation, crystal pull rates and widths of the inductor main slit is carried out to analyse their influence on the evolution …

010302 applied physicsMaterials scienceSiliconbusiness.industryRotational symmetryTime evolutionPhase (waves)chemistry.chemical_element010103 numerical & computational mathematicsMechanicsCondensed Matter PhysicsRotation01 natural sciencesCondensed Matter::Soft Condensed MatterInorganic ChemistryMonocrystalline siliconCrystalOpticschemistry0103 physical sciencesMaterials ChemistryTransient (oscillation)0101 mathematicsbusinessJournal of Crystal Growth
researchProduct

Experimental and numerical investigation of laboratory crystal growth furnace for the development of model-based control of CZ process

2019

Abstract The presented study is focused on laboratory Czochralski crystal growth experiments and their mathematical modelling. The developed small-scale CZ crystal growth furnace is described as well as the involved automation systems: crystal radius detection by image recognition, temperature sensors, adjustable heater power and crystal pull rate. The CZ-Trans program is used to model the experimental results – transient, 2D axisymmetric simulation software primarily used for modelling of the industrial-scale silicon crystal growth process. Poor agreement with the experimental results is reached; however, the proven ability to perform affordable, small-scale experiments and successfully mo…

010302 applied physicsMaterials sciencebusiness.industryProcess (computing)Mechanical engineeringCrystal growth02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physicscomputer.software_genreProcess automation system01 natural sciencesAutomationSimulation softwareInorganic ChemistryCrystalMonocrystalline silicon0103 physical sciencesMaterials ChemistryTransient (oscillation)0210 nano-technologybusinesscomputerJournal of Crystal Growth
researchProduct

Synchronous precessional motion of multiple domain in a ferromagnetic nanowire by perpendicular field pulses

2014

Magnetic storage and logic devices based on magnetic domain wall motion rely on the precise and synchronous displacement of multiple domain walls. The conventional approach using magnetic fields does not allow for the synchronous motion of multiple domains. As an alternative method, synchronous current-induced domain wall motion was studied, but the required high-current densities prevent widespread use in devices. Here we demonstrate a radically different approach: we use out-of-plane magnetic field pulses to move in-plane domains, thus combining field-induced magnetization dynamics with the ability to move neighbouring domain walls in the same direction. Micromagnetic simulations suggest …

010302 applied physicsPhysicsMagnetization dynamicsMultidisciplinaryMagnetic domainCondensed matter physicsField (physics)Magnetic storageGeneral Physics and Astronomy02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyDisplacement (vector)Articlelaw.inventionDomain (software engineering)Magnetic fieldNuclear magnetic resonanceDomain wall (magnetism)law0103 physical sciencesddc:5300210 nano-technologyNature Communications
researchProduct

Magnetic field control of gas-liquid mass transfer in ferrofluids

2020

Abstract Gas-liquid mass transfer plays a key role in a broad range of industrial processes. The magnetic field control over the morphology of the gas-liquid interface and solute transport is an attractive feature if it can be realized efficiently. However, the magnetic properties of typical liquids and gases are rather weak. The experimental investigation is carried out to evaluate the effect of the magnetic field, which is mediated by magnetic nanoparticles, on the gas-liquid mass exchange during the sparging run through a hydrocarbon ferrofluid. The results indicate that the gradient field is especially effective at controlling the gas-liquid contact volume: the foaming of the liquid dur…

010302 applied physicsRange (particle radiation)FerrofluidMaterials science02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldPhysics::Fluid DynamicsCondensed Matter::Soft Condensed MatterVolume (thermodynamics)Chemical physicsMass transfer0103 physical sciencesMagnetic nanoparticlesVector field0210 nano-technologySpargingJournal of Magnetism and Magnetic Materials
researchProduct

Spontaneous order in ensembles of rotating magnetic droplets

2019

Ensembles of elongated magnetic droplets in a rotating field are studied experimentally. In a given range of field strength and frequency the droplets form rotating structures with a triangular order - rotating crystals. A model is developed to describe ensembles of several droplets, taking into account the hydrodynamic interactions between the rotating droplets in the presence of a solid wall below the rotating ensemble. A good agreement with the experimentally observed periodic dynamics for an ensemble of four droplets is obtained. During the rotation, the tips of the elongated magnetic droplets approach close to one another. An expression is derived that gives the magnetic interaction be…

010302 applied physicsRange (particle radiation)Materials scienceField (physics)Dynamics (mechanics)Fluid Dynamics (physics.flu-dyn)FOS: Physical sciencesField strengthPhysics - Fluid Dynamics02 engineering and technologyCondensed Matter - Soft Condensed MatterSolid wall021001 nanoscience & nanotechnologyCondensed Matter PhysicsRotation01 natural sciencesMolecular physicsElectronic Optical and Magnetic MaterialsPhysics::Fluid DynamicsColloid0103 physical sciencesPhysics::Atomic and Molecular ClustersSoft Condensed Matter (cond-mat.soft)Self-assembly0210 nano-technology
researchProduct

Towards Open Domain Chatbots—A GRU Architecture for Data Driven Conversations

2018

Understanding of textual content, such as topic and intent recognition, is a critical part of chatbots, allowing the chatbot to provide relevant responses. Although successful in several narrow domains, the potential diversity of content in broader and more open domains renders traditional pattern recognition techniques inaccurate. In this paper, we propose a novel deep learning architecture for content recognition that consists of multiple levels of gated recurrent units (GRUs). The architecture is designed to capture complex sentence structure at multiple levels of abstraction, seeking content recognition for very wide domains, through a distributed scalable representation of content. To …

010302 applied physicsStructure (mathematical logic)Service (systems architecture)Computer sciencebusiness.industryDeep learning02 engineering and technologycomputer.software_genre01 natural sciencesChatbotNaive Bayes classifier020204 information systems0103 physical sciencesPattern recognition (psychology)0202 electrical engineering electronic engineering information engineeringArtificial intelligenceArchitecturebusinesscomputerNatural language processingSentence
researchProduct

Contrasting topologies for regular interconnection networks under the constraints of nanoscale silicon technology

2010

Nowadays, system designers have adopted Networks-on-Chip as communication infrastructure of general-purpose tile-based Multi-Processor System-on-Chip (MPSoC). Such decision implies that a certain topology has to be selected to efficiently interconnect many cores on the chip. To ease such a choice, the networking literature offers a plethora of works about topology analysis and characterization for the off-chip domain. However, theoretical parameters and many intuitive assumptions of such off-chip networks do not necessarily hold when a topology is laid out on a 2D silicon surface. This is due to the distinctive features of silicon technology design pitfalls. This work is a first milestone t…

010302 applied physicsTopology exploration; Network-on-ChipInterconnectionComputer sciencebusiness.industryDistributed computingLogical topologyTopology explorationTopology (electrical circuits)02 engineering and technologyMPSoCNetwork topology01 natural sciencesPipeline (software)020202 computer hardware & architectureNetwork on a chip0103 physical sciences0202 electrical engineering electronic engineering information engineeringNetwork-on-ChipbusinessDesign technologyComputer network
researchProduct