Search results for "statistics"
showing 10 items of 7671 documents
Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with …
2011
International audience; Neural networks trained over radiative transfer simulations constitute the basis of several operational algorithms to estimate canopy biophysical variables from satellite reflectance measurements. However, only little attention was paid to the training process which has a major impact on retrieval performances. This study focused on the several modalities of the training process within neural network estimation of LAI, FCOVER and FAPAR biophysical variables. Performances were evaluated over both actual experimental observations and model simulations. The SAIL and PROSPECT radiative transfer models were used here to simulate the training and the synthetic test dataset…
Anticipating the impact of pitfalls in kinetic biodegradation parameter estimation from substrate depletion curves of organic pollutants
2019
[EN] Accurate and reliable estimation of kinetic parameters of pollutant biodegradation processes is essential for environmental and health risk assessment. Common biodegradation models proposed in the literature, such as the nonlinear Monod equation and its simplified versions (e.g. Michaelis-Menten-like and first-order equations), are problematic in terms of accuracy of kinetic parameters due to the parameter correlation. However, a comparison between these models in terms of accuracy and reliability, related to data imprecision, has not been performed in the literature. This task is necessary, mainly because the model selection cannot be straightforward, as shown in this work. To facilit…
Soil organic carbon stock on the Majorca Island: temporal change in agricultural soil over the last 10 years
2019
8 Pags.- 5 Tabls.- 3 Figs.
Efficient remote sensing image classification with Gaussian processes and Fourier features
2017
This paper presents an efficient methodology for approximating kernel functions in Gaussian process classification (GPC). Two models are introduced. We first include the standard random Fourier features (RFF) approximation into GPC, which largely improves the computational efficiency and permits large scale remote sensing data classification. In addition, we develop a novel approach which avoids randomly sampling a number of Fourier frequencies, and alternatively learns the optimal ones using a variational Bayes approach. The performance of the proposed methods is illustrated in complex problems of cloud detection from multispectral imagery.
Gas mass derived by infrasound and UV cameras: Implications for mass flow rate
2016
Abstract Mass Flow Rate is one of the most crucial eruption source parameter used to define magnitude of eruption and to quantify the ash dispersal in the atmosphere. However, this parameter is in general difficult to be derived and no valid technique has been developed yet to measure it in real time with sufficient accuracy. Linear acoustics has been applied to infrasonic pressure waves generated by explosive eruptions to indirectly estimate the gas mass erupted and then the mass flow rate. Here, we test on Stromboli volcano (Italy) the performance of such methodology by comparing the acoustic derived results with independent gas mass estimates obtained with UV cameras, and constraining th…
Crop specific algorithms trained over ground measurements provide the best performance for GAI and fAPAR estimates from Landsat-8 observations
2021
Abstract Estimation of Green Area Index (GAI) and fraction of Absorbed Photosynthetically Active Radiation (fAPAR) from decametric satellites was investigated in this study using a large database of ground measurements over croplands. It covers six main crop types including rice, corn, wheat and barley, sunflower, soybean and other types of crops. Ground measurements were completed using either digital hemispherical cameras, LAI-2000 or AccuPAR devices over sites representative of a decametric pixel. Sites were spread over the globe and the data collected at several growth stages concurrently to the acquisition of Landsat-8 images. Several machine learning techniques were investigated to re…
Hyperspectral dimensionality reduction for biophysical variable statistical retrieval
2017
Abstract Current and upcoming airborne and spaceborne imaging spectrometers lead to vast hyperspectral data streams. This scenario calls for automated and optimized spectral dimensionality reduction techniques to enable fast and efficient hyperspectral data processing, such as inferring vegetation properties. In preparation of next generation biophysical variable retrieval methods applicable to hyperspectral data, we present the evaluation of 11 dimensionality reduction (DR) methods in combination with advanced machine learning regression algorithms (MLRAs) for statistical variable retrieval. Two unique hyperspectral datasets were analyzed on the predictive power of DR + MLRA methods to ret…
Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index
2017
This paper presents and evaluates multitemporal LAI estimates derived from Sentinel-2A data on rice cultivated area identified using time series of Sentinel-1A images over the main European rice districts for the 2016 crop season. This study combines the information conveyed by Sentinel-1A and Sentinel-2A into a high-resolution LAI retrieval chain. Rice crop was detected using an operational multi-temporal rule-based algorithm, and LAI estimates were obtained by inverting the PROSAIL radiative transfer model with Gaussian process regression. Direct validation was performed with in situ LAI measurements acquired in coordinated field campaigns in three countries (Italy, Spain and Greece). Res…
The UKC3 regional coupled environmental prediction system
2019
Abstract. This paper describes an updated configuration of the regional coupled research system, termed UKC3, developed and evaluated under the UK Environmental Prediction collaboration. This represents a further step towards a vision of simulating the numerous interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land using more integrated regional coupled prediction systems at km-scale resolution. The UKC3 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean surface waves (WAVEWATCH III), coupled together using OASIS3-MC…
A space-time rainfall generator for highly convective Mediterranean rainstorms
2003
Distributed hydrological models require fine resolution rainfall inputs, enhancing the practical interest of space-time rainfall models, capable of generating through numerical simulation realistic space-time rainfall intensity fields. Among different mathematical approaches, those based on point processes and built upon a convenient analytical description of the raincell as the fundamental unit, have shown to be particularly suitable and well adapted when extreme rainfall events of convective nature are considered. Starting from previous formulations, some analytical refinements have been considered, allowing practical generation of space-time rainfall intensity fields for that type of rai…