Search results for "stereo"

showing 10 items of 6147 documents

Evaluation of Planar-Cell-Polarity Phenotypes in Ciliopathy Mouse Mutant Cochlea

2016

In recent years, primary cilia have emerged as key regulators in development and disease by influencing numerous signaling pathways. One of the earliest signaling pathways shown to be associated with ciliary function was the non-canonical Wnt signaling pathway, also referred to as planar cell polarity (PCP) signaling. One of the best places in which to study the effects of planar cell polarity (PCP) signaling during vertebrate development is the mammalian cochlea. PCP signaling disruption in the mouse cochlea disrupts cochlear outgrowth, cellular patterning and hair cell orientation, all of which are affected by cilia dysfunction. The goal of this protocol is to describe the analysis of PCP…

0301 basic medicineCell signalingGeneral Chemical EngineeringStereocilia (inner ear)Cochlear ductBiologyGeneral Biochemistry Genetics and Molecular BiologyStereociliaMice03 medical and health sciencesHair Cells AuditorymedicineAnimalsCochleaGeneral Immunology and MicrobiologyGeneral NeuroscienceCiliumWnt signaling pathwayCell PolarityCochlear DuctEmbryo Mammalianmedicine.diseaseImmunohistochemistryCiliopathiesCochleaCell biologyDisease Models AnimalCiliopathyPhenotype030104 developmental biologymedicine.anatomical_structureMicroscopy Electron ScanningMedicinesense organsHair cellSignal TransductionJournal of Visualized Experiments
researchProduct

The Influence of Hydrogen Bonding on Sphingomyelin/Colipid Interactions in Bilayer Membranes

2016

The phospholipid acyl chain composition and order, the hydrogen bonding, and properties of the phospholipid headgroup all influence cholesterol/phospholipid interactions in hydrated bilayers. In this study, we examined the influence of hydrogen bonding on sphingomyelin (SM) colipid interactions in fluid uni- and multilamellar vesicles. We have compared the properties of oleoyl or palmitoyl SM with comparable dihydro-SMs, because the hydrogen bonding properties of SM and dihydro-SM differ. The association of cholestatrienol, a fluorescent cholesterol analog, with oleoyl sphingomyelin (OSM) was significantly stronger than its association with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, …

0301 basic medicineCeramideDouble bondStereochemistryLipid BilayersBiophysicsPhospholipidOleic AcidsPalmitic AcidsCholesterol analogCeramides03 medical and health scienceschemistry.chemical_compoundLipid bilayerchemistry.chemical_classificationMembranesHydrogen bondBilayerfungita1182technology industry and agricultureHydrogen BondingSphingomyelins030104 developmental biologychemistrylipids (amino acids peptides and proteins)Sphingomyelin
researchProduct

Cytotoxic benzylbenzofuran derivatives from Dorstenia kameruniana

2018

Abstract Chromatographic separation of the extract of the roots of Dorstenia kameruniana (family Moraceae) led to the isolation of three new benzylbenzofuran derivatives, 2-(p-hydroxybenzyl)benzofuran-6-ol (1), 2-(p-hydroxybenzyl)-7-methoxybenzofuran-6-ol (2) and 2-(p-hydroxy)-3-(3-methylbut-2-en-1-yl)benzyl)benzofuran-6-ol(3) (named dorsmerunin A, B and C, respectively), along with the known furanocoumarin, bergapten (4). The twigs of Dorstenia kameruniana also produced compounds 1–4 as well as the known chalcone licoagrochalcone A (5). The structures were elucidated by NMR spectroscopy and mass spectrometry. The isolated compounds displayed cytotoxicity against the sensitive CCRF-CEM and …

0301 basic medicineChalconeStereochemistryMoraceaeBergapten03 medical and health sciencesFuranocoumarinchemistry.chemical_compound0302 clinical medicineCell Line TumorDrug DiscoveryHumansCytotoxicityIC50Institut für Biochemie und BiologieBenzofuransPharmacologyMolecular StructurebiologyGeneral MedicineNuclear magnetic resonance spectroscopyMoraceaebiology.organism_classificationAntineoplastic Agents PhytogenicDrug Resistance Multiple030104 developmental biologychemistryDrug Resistance NeoplasmCell culture030220 oncology & carcinogenesisddc:540Fitoterapia
researchProduct

Specific and highly efficient condensation of GC and IC DNA by polyaza pyridinophane derivatives

2018

Abstract Two bis-polyaza pyridinophane derivatives and their monomeric reference compounds revealed strong interactions with ds-DNA and RNA. The bis-derivatives show a specific condensation of GC- and IC-DNA, which is almost two orders of magnitude more efficient than the well-known condensation agent spermine. The type of condensed DNA was identified as ψ-DNA, characterized by the exceptionally strong CD signals. At variance to the almost silent AT(U) polynucleotides, these strong CD signals allow the determination of GC-condensates at nanomolar nucleobase concentrations. Detailed thermodynamic characterisation by ITC reveals significant differences between the DNA binding of the bis-deriv…

0301 basic medicineCircular dichroismStereochemistryPyridonesEnthalpySpermineCalorimetryMicroscopy Atomic ForceNucleic Acid DenaturationBiochemistryNucleobase03 medical and health scienceschemistry.chemical_compoundStructural BiologyPyridinophane compounds ; DNA/RNA binding ; GC-DNA condensation ; circular dichroism spectroscopyMolecular BiologyRNA Double-StrandedAnalytic ChemistryCircular DichroismOrganic ChemistryTemperatureRNAGeneral MedicineDNAChemistry030104 developmental biologyMonomerchemistryPolynucleotideNucleic Acid ConformationDNA
researchProduct

The Binding Mechanism of Epolactaene to Hsp60 Unveiled by in Silico Modelling

2016

Molecular Dynamics (MD) simulations and DFT/MM calculations were performed in order to rationalize available experimental results and to provide structural details on the binding mechanism of Epolactaene (EPO) to the 60 KDa Heat Shock Protein (Hsp60). The available crystal structure of Hsp60 represents the last step of the chaperone folding cycle, while the Hsp60-EPO complex was obtained by using a homology model of Hsp60, in order to simulate a state related to the beginning of the folding cycle (Rs1). The results of MD simulations point out that EPO shows the highest binding affinity for the empty ATP binding site. The presence of ATP opens a channel that allows the entrance of both EPO d…

0301 basic medicineConformational changeanimal structuresStereochemistryProteins · Molecular Dynamics · Density Functional Theory · Heat Shock Proteins · Epolactaene010402 general chemistry01 natural sciences03 medical and health sciencesMolecular dynamicschemistry.chemical_compoundHeat shock proteinHomology modelingBinding siteEpolactaenebiologyChemistrySettore BIO/16 - Anatomia UmanafungiGeneral ChemistrySettore CHIM/06 - Chimica Organica0104 chemical sciencesCrystallography030104 developmental biologyCovalent bondSettore CHIM/03 - Chimica Generale E InorganicaChaperone (protein)biology.protein
researchProduct

Alkyne-Functionalized Coumarin Compound for Analytic and Preparative 4-Thiouridine Labeling

2017

Bioconjugation of RNA is a dynamic field recently reinvigorated by a surge in research on post-transcriptional modification. This work focuses on the bioconjugation of 4-thiouridine, a nucleoside that occurs as a post-transcriptional modification in bacterial RNA and is used as a metabolic label and for cross-linking purposes in eukaryotic RNA. A newly designed coumarin compound named 4-bromomethyl-7-propargyloxycoumarin (PBC) is introduced, which exhibits remarkable selectivity for 4-thiouridine. Bearing a terminal alkyne group, it is conductive to secondary bioconjugation via “click chemistry”, thereby offering a wide range of preparative and analytical options. We applied PBC to quantita…

0301 basic medicineCoumarin CompoundFluorophoreStereochemistryThiouridineBiomedical EngineeringPharmaceutical ScienceAlkyneBioengineeringThiouridine03 medical and health scienceschemistry.chemical_compoundCoumarinsRNA Processing Post-TranscriptionalPharmacologychemistry.chemical_classificationBinding SitesBioconjugationStaining and LabelingOrganic ChemistryRNAAffinity LabelsRNA Bacterial030104 developmental biologychemistryAlkynesTransfer RNAClick chemistryClick ChemistryProtein BindingBiotechnologyBioconjugate Chemistry
researchProduct

Highly effective, regiospecific reduction of chalcone by cyanobacteria leads to the formation of dihydrochalcone: two steps towards natural sweetness

2017

Abstract Background Chalcones are the biogenetic precursors of all known flavonoids, which play an essential role in various metabolic processes in photosynthesizing organisms. The use of whole cyanobacteria cells in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone, is reported. The prokaryotic microalgae cyanobacteria are known to produce phenolic compounds, including flavonoids, as natural components of cells. It seems logical that organisms producing such compounds possess a suitable “enzymatic apparatus” to carry out their biotransformation. Therefore, determination of the ability of whole cells of select…

0301 basic medicineCyanobacteriaChalconeLightBioconversionlcsh:QR1-502PhotobioreactorBioengineeringBiologyAphanizomenonCyanobacteria01 natural sciencesApplied Microbiology and BiotechnologyCatalysisGas Chromatography-Mass Spectrometrylcsh:Microbiology03 medical and health scienceschemistry.chemical_compoundChalconesChalconeBiotransformationRegioselective bio-reductionOrganic chemistryBiotransformation010405 organic chemistryResearchDihydrochalconeStereoisomerismbiology.organism_classificationDihydrochalcone0104 chemical sciences030104 developmental biologychemistryBiochemistryBiocatalysisSweetening AgentsBiocatalysisOxidation-ReductionBiotechnologyMicrobial Cell Factories
researchProduct

Biocatalytic hydrogenation of the C=C bond in the enone unit of hydroxylated chalcones-process arising from cyanobacterial adaptations.

2018

To verify the hypothesis that cyanobacteria naturally biosynthesising polyphenolic compounds possess an active enzymatic system that enables them to transform these substances, such an ability of the biocatalytic systems of whole cells of these biota was assessed for the first time. One halophilic strain and seven freshwater strains of cyanobacteria representing four of the five taxonomic orders of Cyanophyta were examined to determine the following: (i) whether they contain polyphenols, including flavonoids; (ii) the resistance of their cultures when suppressed by the presence of exogenous hydroxychalcones—precursors of flavonoid biosynthesis and (iii) whether these photoautotrophs can tra…

0301 basic medicineCyanobacteriaStereochemistryHydroxylated chalconesCyanobacteria01 natural sciencesApplied Microbiology and BiotechnologyHydroxylation03 medical and health scienceschemistry.chemical_compoundChalconesbiology010405 organic chemistryfood and beveragesGeneral MedicineCarbon-13 NMRbiology.organism_classification0104 chemical sciencesRegiospecific hydrogenation030104 developmental biologyFlavonoid biosynthesisApplied Microbial and Cell PhysiologychemistryPolyphenolBiocatalysisProton NMRBiocatalysisHydrogenationEnoneBiotechnologyApplied microbiology and biotechnology
researchProduct

Anthranilamide-based 2-phenylcyclopropane-1-carboxamides, 1,1'-biphenyl-4-carboxamides and 1,1'-biphenyl-2-carboxamides: Synthesis biological evaluat…

2017

Abstract Several anthranilamide-based 2-phenylcyclopropane-1-carboxamides 13a-f, 1,1’-biphenyl-4-carboxamides 14a-f and 1,1’-biphenyl-2-carboxamides 17a-f were obtained by a multistep procedure starting from the (1S,2S)-2-phenylcyclopropane-1-carbonyl chloride 11, the 1,1'-biphenyl-4-carbonyl chloride 12 or the 1,1'-biphenyl-2-carbonyl chloride 16 with the appropriate anthranilamide derivative 10a-f. Derivatives 13a-f, 14a-f and 17a-f showed antiproliferative activity against human leukemia K562 cells. Among these derivatives 13b, 14b and 17b exerted a particular cytotoxic effect on tumor cells. Derivative 17b showed a better antitumoral effect on K562 cells than 13b and 14b. Analyses perfo…

0301 basic medicineG2 Phase2-Phenylcyclopropane-1-carboxamides 11’-biphenyl-4-carboxamides 11’-biphenyl-2-carboxamides G2/M arrest Phospho-ATM and gH2AX increaseDNA RepairDNA repairStereochemistryAntineoplastic AgentsApoptosisChloride03 medical and health scienceschemistry.chemical_compound0302 clinical medicineSettore BIO/10 - BiochimicaDrug DiscoverymedicineCytotoxic T cellHumansortho-AminobenzoatesMode of actionCell ProliferationPharmacologyChemistryOrganic ChemistryGeneral MedicineCell Cycle CheckpointsCell cycleSettore CHIM/08 - Chimica Farmaceutica030104 developmental biologyMechanism of actionApoptosis030220 oncology & carcinogenesismedicine.symptomK562 CellsDNAmedicine.drugDNA Damage
researchProduct

Bioelectrochemical monitoring of soluble guanylate cyclase inhibition by the natural β-carboline canthin-6-one

2017

Abstract The inhibition of soluble guanylate cyclase (sGC) by canthin-6-one alkaloid ( L1 ) is presented and the mechanism of deactivation is studied using solution phase and voltammetry of microparticles methodologies. Possible inhibition pathways: oxidation of Fe 2+ to Fe 3+ coupled to reduction of the naphthyridone motif present by the canthin-6-one and coordinating or reacting of L1 with cysteine units of sGC, are balanced.

0301 basic medicineGUCY1B3010405 organic chemistryStereochemistryChemistryAlkaloidOrganic ChemistryGUCY1A301 natural sciencesSolution phase0104 chemical sciencesAnalytical ChemistryInorganic Chemistry03 medical and health sciences030104 developmental biologyCanthin-6-oneVoltammetrySpectroscopyGuanylate cyclaseCysteineJournal of Molecular Structure
researchProduct