Search results for "synchrotron"
showing 10 items of 307 documents
Photoemission microscopy with microspot-XPS by use of undulator radiation and a high-throughput multilayer monochromator at BESSY
1999
We present a new experiment for photoelectron microspectroscopy by use of undulator radiation, which has been set up at the beamline U2 at the Berlin electron storage ring BESSY 1. This approach employs a non-imaging simulated hemispherical electron energy analyser attached to an imaging photoemission electron microscope (FOCUS IS-PEEM) with integrated microarea selector. The photoemission microscope exhibits a lateral resolution of 25 nm (with 4.9 eV UV-excitation), while the resolution with incident synchrotron radiation in the soft X-ray range is about 100-120 nm (mainly due to chromatic aberrations). Photoemission microscopy as well as photoelectron microspectroscopy of selected areas o…
Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity
1997
Abstract With the improved access to synchrotron radiation sources photoemission electron microscopy is developing into a versatile analytical tool in surface and materials science. The broad spectral range and the well-defined polarization characteristics of synchrotron light permit a unique combination of topographic, chemical, and even magnetic investigations down to a mesoscopic scale. The potentiality of photoemission electron microscopy is demonstrated by several experiments on surfaces and microstructured thin film systems, which have been carried out with a newly designed instrument. We discuss its different modes of operation with respect to both microscopy and spectroscopy. A comb…
Fast elemental mapping and magnetic imaging with high lateral resolution using a novel photoemission microscope
1998
Abstract Using tunable soft X-ray synchrotron radiation and a new-generation photoemission electron microscope with integral sample stage and microarea selector, elemental images and local XANES spectra have been measured. Given the present conditions (PM3 at BESSY), the lateral resolution was in the range of 130 nm with the potential of considerable improvement with high-brilliance sources (a base resolution of 25 nm was obtained in threshold photoemission). Measurements at the oxygen K-edge demonstrate that differences in the local chemical environment of the emitter atom are clearly revealed and can thus be used as a fingerprint technique for its chemical state and geometrical surroundin…
End-to-end tests using alanine dosimetry in scanned proton beams
2018
This paper describes end-to-end test procedures as the last fundamental step of medical commissioning before starting clinical operation of the MedAustron synchrotron-based pencil beam scanning (PBS) therapy facility with protons. One in-house homogeneous phantom and two anthropomorphic heterogeneous (head and pelvis) phantoms were used for end-to-end tests at MedAustron. The phantoms were equipped with alanine detectors, radiochromic films and ionization chambers. The correction for the 'quenching' effect of alanine pellets was implemented in the Monte Carlo platform of the evaluation version of RayStation TPS. During the end-to-end tests, the phantoms were transferred through the workflow…
Excitation processes of the blue luminescence in crystalline SiO 2 probed by synchrotron radiation measurements
2007
Luminescence properties of crystalline α-quartz were investigated by time-resolved spectroscopy under pulsed synchrotron radiation excitation in the vacuum ultraviolet range. Our results evidence that two emission bands overlap at 2.7 eV, both being observed only at low temperature. The first contribution is excited by band-to-band transition and is related to the radiative recombination of a self trapped exciton occurring in a time scale of a few ms, the second is associated with defects induced in quartz by γ- and β-radiation, is excited at 7.6 eV and its lifetime is 3.6 ns at T = 10 K. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Anomale röntgenstreuung zur erforschung makromolekularer strukturen
1982
The possibilities of anomalous X-ray scattering for the investigation of semi- or noncrystalline macromolecular structures are discussed on the grounds of the first successful measurements of anomalous scattering of iron in dissolved hemoglobin. As anomalous scattering of this kind of material is limited to the near vicinity of the X-ray absorption edges, the use of synchrotron radiation appears to be obligatory. The anomalous dispersion of the atomic form factors slightly increases with the atomic number. Anomalous dispersion is nearly doubled when going from the K-absorption edge to the LIII-absorption edge and from there to the Mv- absorption edge. Therefore, the use of anomalous dispers…
Luminescence and vacuum ultraviolet excitation spectroscopy of samarium doped SrB4O7
2020
Abstract Sm2+ and Sm3+ co-doped SrB4O7 could be utilized in several high-level optical devices and fundamental knowledge about the optical behavior of these materials benefits the development of luminescent applications. Herein, we report luminescence and its vacuum ultraviolet (VUV) excitation spectra in samarium doped SrB4O7. Both, Sm2+ and Sm3+ luminescence centers have been examined and distinguished in the emission and the excitation spectra investigated under synchrotron radiation. The contribution of either Sm2+ or Sm3+ emission lines into the emission spectra heavily depended on the excitation energy, and strong f-f transitions of both Sm2+ and Sm3+ were detected. At 10 K, a broad i…
Luminescence of γ-radiation-induced defects in α-quartz
2004
Optical transitions associated with γ-radiation-induced defects in crystalline α-quartz were investigated by photoluminescence excited by both pulsed synchrotron radiation and steady-state light. After a 10 MGy γ-dose we observed two emissions at 4.9 eV (ultraviolet band) and 2.7 eV (blue band) excitable in the range of the induced absorption band at 7.6 eV. These two luminescence bands show a different temperature dependence: the ultraviolet band becomes bright below 80 K; the blue band increases below 180 K, but drops down below 80 K. Both emissions decay in a timescale of a few ns under pulsed excitation, however the blue band could also be observed in slow recombination processes and it…
Nuclear Resonance Scattering Using Synchrotron Radiation (Mössbauer Spectroscopy in the Time Domain)
2010
Conventional Mossbauer spectroscopy (MS) can be considered as “spectroscopy in the energy domain.” It has been widely used since its discovery in 1958 [1]. Nuclear resonant forward scattering (NFS) of synchrotron radiation has been successfully employed as a time-differential technique since 1991 [2]. Another related technique, nuclear inelastic scattering (NIS) of synchrotron radiation [3], can be regarded as an extension of conventional, energy-resolved MS (in the range 10−9 to 10−7 eV) to energies on the order of molecular vibrations (in the range 10−3 to 10−1 eV). So far only a few “Mossbauer” stations for NFS and NIS measurements have become available in synchrotron laboratories, i.e.,…
Resonant X-Ray Scattering of Biological Systems
1987
Nearly all synchrotron radiation laboratories at high energy electron storage rings put enormous effort into the developement of resonant (anomalous) X-ray scattering techniques. So does the Hamburger Synchrotronstrahlungslabor (HASYLAB) at Hamburg. One of these intruments which is built in cooperation with the university of Mainz at the beam line A1 of the storage ring DORIS. How does the physics of resonant scattering enter into the design of the X-ray instrument.