Search results for "ta214"
showing 10 items of 55 documents
Communication modes in vector diffraction
2010
The communication modes, which mathematically correspond to singular value decomposition, have proven a useful concept in optical scalar-field diffraction, with applications in resolution studies, image synthesis, and wave propagation. For optical near-field geometries the communication modes have to be extended to electromagnetic field accounting for the polarization properties. In this paper we present the vector-valued communication modes method based on the rigorous electric-field diffraction integral. As a special case the transverse-electric scalar field modes are obtained. The intensity and polarization properties of the leading electromagnetic communication modes in near-field arran…
Hidden Structural Features of Multicompartment Micelles Revealed by Cryogenic Transmission Electron Tomography
2014
The demand for ever more complex nanostructures in materials and soft matter nanoscience also requires sophisticated characterization tools for reliable visualization and interpretation of internal morphological features. Here, we address both aspects and present synthetic concepts for the compartmentalization of nanoparticle peripheries as well as their in situ tomographic characterization. We first form negatively charged spherical multicompartment micelles from ampholytic triblock terpolymers in aqueous media, followed by interpolyelectrolyte complex (IPEC) formation of the anionic corona with bis-hydrophilic cationic/neutral diblock copolymers. At a 1:1 stoichiometric ratio of anionic a…
Gigahertz Single-Electron Pumping Mediated by Parasitic States
2018
In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achi…
Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide
2015
DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thi…
Multicriteria evaluation of heating choices for a new sustainable residential area
2015
Abstract The city of Loviisa in Finland is planning a new sustainable residential area with a total of 240,000 m2 of residential houses and apartment buildings with services. The city wants to promote sustainable energy solutions in the area, considering various renewable energy forms for heating. The aim of this research is to evaluate which heating system would be best for a new single-family house when different technical, economic, environmental and usability criteria are considered. A group of experts evaluated the alternative heating systems with respect to the criteria. The citizens were involved with a questionnaire to provide preference information for different criteria. Altogethe…
Reliability analysis of processes with moving cracked material
2015
Abstract The reliability of processes with moving elastic and isotropic material containing initial cracks is considered in terms of fracture. The material is modelled as a moving plate which is simply supported from two of its sides and subjected to homogeneous tension acting in the travelling direction. For tension, two models are studied: (i) tension is constant with respect to time, and (ii) tension varies temporally according to an Ornstein–Uhlenbeck process. Cracks of random length are assumed to occur in the material according to a stochastic counting process. For a general counting process, a representation of the nonfracture probability of the system is obtained that exploits condi…
Stochastic multicriteria evaluation of district heating systems considering the uncertainties
2018
It is of great importance to choose a suitable district heating (DH) system for a specific DH area from the economics, environment and energy (3E) points of view. This is a multicriteria decision making problem, in which the criteria performance values (PVs) and weighting are characterized by uncertain or imprecise information. In this study, seven candidate DH systems are evaluated from the viewpoints of 3E by the stochastic multicriteria acceptability analysis (SMAA) method. SMAA is able to handle the uncertainties of the criteria PVs and the weighting at the same time. These uncertainties are very common and typical in real-life, but in most cases are not treated judiciously or just negl…
Supramolecular functionalization and concomitant enhancement in properties of Au25 clusters
2014
We present a versatile approach for tuning the surface functionality of an atomically precise 25 atom gold cluster using specific host-guest interactions between ?-cyclodextrin (CD) and the ligand anchored on the cluster. The supramolecular interaction between the Au25 cluster protected by 4-(t-butyl)benzyl mercaptan, labeled Au25SBB18, and CD yielding Au25SBB18�?�CDn (n = 1, 2, 3, and 4) has been probed experimentally using various spectroscopic techniques and was further analyzed by density functional theory calculations and molecular modeling. The viability of our method in modifying the properties of differently functionalized Au25 clusters is demonstrated. Besides modifying their optoe…
The origin of in-plane stresses in axially moving orthotropic continua
2016
In this paper, we address the problem of the origin of in-plane stresses in continuous, two-dimensional high-speed webs. In the case of thin, slender webs, a typical modeling approach is the application of a stationary in-plane model, without considering the effects of the in-plane velocity field. However, for high-speed webs this approach is insufficient, because it neglects the coupling between the total material velocity and the deformation experienced by the material. By using a mixed Lagrange–Euler approach in model derivation, the solid continuum problem can be transformed into a solid continuum flow problem. Mass conservation in the flow problem, and the behaviour of free edges in th…
Cavity optomechanics mediated by a quantum two-level system
2015
Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum–mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities. Here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiat…