Search results for "transfer RNA"

showing 10 items of 87 documents

Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling.

2010

This work identifies the combination of enzymatic transfer and click labeling as an efficient method for the site-specific tagging of RNA molecules for biophysical studies. A double-activated analog of the ubiquitous co-substrate S-adenosyl-l-methionine was employed to enzymatically transfer a five carbon chain containing a terminal alkynyl moiety onto RNA. The tRNA:methyltransferase Trm1 transferred the extended alkynyl moiety to its natural target, the N2 of guanosine 26 in tRNA(Phe). LC/MS and LC/MS/MS techniques were used to detect and characterize the modified nucleoside as well as its cycloaddition product with a fluorescent azide. The latter resulted from a labeling reaction via Cu(I…

S-AdenosylmethioninetRNA MethyltransferasesBase SequenceStereochemistryMolecular Sequence DataGuanosineRNAFluorescence correlation spectroscopyBiologyTRNA Methyltransferaseschemistry.chemical_compoundRNA Transfer PheSpectrometry FluorescencechemistryBiochemistryAlkynesTransfer RNASynthetic Biology and ChemistryGeneticsClick chemistryMoietyClick ChemistryAzideOrganic ChemicalsFluorescent DyesNucleic acids research
researchProduct

Global translational repression induced by iron deficiency in yeast depends on the Gcn2/eIF2α pathway

2020

Iron is an essential element for all eukaryotic organisms because it participates as a redox active cofactor in a wide range of biological processes, including protein synthesis. Translation is probably the most energy consuming process in cells. Therefore, one of the initial responses of eukaryotic cells to stress or nutrient limitation is the arrest of mRNA translation. In first instance, the budding yeast Saccharomyces cerevisiae responds to iron deficiency by activating iron acquisition and remodeling cellular metabolism in order to prioritize essential over non-essential iron-dependent processes. We have determined that, despite a global decrease in transcription, mRNA translation is a…

Saccharomyces cerevisiae ProteinsMolecular biologyEukaryotic Initiation Factor-2Saccharomyces cerevisiaelcsh:MedicineSaccharomyces cerevisiaeProtein Serine-Threonine KinasesBiochemistryArticleCofactorTranscription (biology)Protein biosynthesislcsh:SciencePsychological repressionMultidisciplinarybiologyChemistrylcsh:RTranslation (biology)Iron Deficienciesbiology.organism_classificationYeastCell biologyProtein BiosynthesisTransfer RNAbiology.proteinlcsh:Q
researchProduct

RNA marker modifications reveal the necessity for rigorous preparation protocols to avoid artifacts in epitranscriptomic analysis

2021

Abstract The accurate definition of an epitranscriptome is endangered by artefacts resulting from RNA degradation after cell death, a ubiquitous yet little investigated process. By tracing RNA marker modifications through tissue preparation protocols, we identified a major blind spot from daily lab routine, that has massive impact on modification analysis in small RNAs. In particular, m6,6A and Am as co-varying rRNA marker modifications, appeared in small RNA fractions following rRNA degradation in vitro and in cellulo. Analysing mouse tissue at different time points post mortem, we tracked the progress of intracellular RNA degradation after cell death, and found it reflected in RNA modific…

Small RNAProgrammed cell deathRNABiologyRibosomal RNAIn vitroCell biologyCortex (botany)MiceRNA TransferRNA RibosomalTransfer RNAGeneticsAnimalsRNARNA Processing Post-TranscriptionalArtifactsIntracellularNucleic Acids Research
researchProduct

Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders.

2014

Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell siz…

Small RNARNA methylationBiologyNSun2MethylationGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMisuMice0302 clinical medicineRNA TransferGene expressionAnimalsHumans5‐methylcytidine ; Misu ; Nsun2 ; Rna ModificationMolecular Biology030304 developmental biology5-methylcytidineRegulation of gene expression0303 health sciencesTRNA methylationGeneral Immunology and MicrobiologyGeneral NeuroscienceGene Expression ProfilingRNABrainArticlesMethylationMethyltransferasesRibonuclease PancreaticRNA modificationMolecular biologyOxidative StressGene Expression RegulationTransfer RNANervous System Diseases030217 neurology & neurosurgery5‐methylcytidine
researchProduct

Small RNA‐binding protein RapZ mediates cell envelope precursor sensing and signaling in Escherichia coli

2019

Abstract The RNA‐binding protein RapZ cooperates with small RNAs (sRNAs) GlmY and GlmZ to regulate the glmS mRNA in Escherichia coli. Enzyme GlmS synthesizes glucosamine‐6‐phosphate (GlcN6P), initiating cell envelope biosynthesis. GlmZ activates glmS expression by base‐pairing. When GlcN6P is ample, GlmZ is bound by RapZ and degraded through ribonuclease recruitment. Upon GlcN6P depletion, the decoy sRNA GlmY accumulates through a previously unknown mechanism and sequesters RapZ, suppressing GlmZ decay. This circuit ensures GlcN6P homeostasis and thereby envelope integrity. In this work, we identify RapZ as GlcN6P receptor. GlcN6P‐free RapZ stimulates phosphorylation of the two‐component sy…

Small RNAsmall regulatory RNAcell envelope precursor glucosamine‐6‐phosphatemedicine.disease_causenegative feedback loopmetabolite sensing0302 clinical medicinetwo-component system QseE-QseFRNA-binding protein RapZRNA‐binding protein RapZGlucosamine0303 health sciencesbiologyEscherichia coli ProteinsGeneral NeuroscienceRNA-Binding ProteinsArticlesRNA BiologyMicrobiology Virology & Host Pathogen InteractionReceptors AdrenergicCell biologyDNA-Binding ProteinsRNA BacterialTransfer RNAPhosphorylationCell envelopeSignal TransductionGlucose-6-PhosphateGeneral Biochemistry Genetics and Molecular BiologyArticletwo‐component system QseE‐QseF03 medical and health sciencesBacterial Proteinscell envelope precursorEscherichia colimedicineRNA MessengerRibonucleaseMolecular BiologyEscherichia coli030304 developmental biologyMessenger RNAGeneral Immunology and MicrobiologyBinding proteinsmall RNAs GlmY and GlmZGene Expression Regulation BacterialMicroreviewRNA binding proteincell envelope precursor glucosamine-6-phosphatetwo-component systembiology.proteinRNA Small Untranslated030217 neurology & neurosurgeryThe EMBO Journal
researchProduct

On the function of modified nucleosides in the RNA world.

1998

Presumably ribosome and transfer RNA (tRNA) evolved from a pre-existing function in the RNA stage of life and were secondarily adapted for protein synthesis. Various possible initial functions of the primitive ribosome (protoribosome) have been suggested. The initial function of the primitive ribosome and primitive genetic translation would have been quite similar. It is possible that, initially, both functions coexisted in the protoribosome. Given that the three-dimensional structure of ribosomal RNAs shows only minor variations throughout time, it is, then, most likely that present ribosomes can still recall (remember) the most important parts of the mechanism of their initial function. A…

Statistics and ProbabilityGeneral Immunology and MicrobiologyApplied MathematicsRibozymeRNATranslation (biology)NucleosidesGeneral MedicineBiologyRibosomeGeneral Biochemistry Genetics and Molecular BiologyGenetic translationEvolution MolecularBiochemistryRNA TransferRNA RibosomalModeling and SimulationProtein BiosynthesisTransfer RNAbiology.proteinProtein biosynthesisAnimalsRNAGeneral Agricultural and Biological SciencesEukaryotic RibosomeJournal of theoretical biology
researchProduct

On the dimerization of the primitive tRNAs: implications in the origin of genetic code.

2002

RNAs that catalyse their own aminoacylation have been recently selected in vitro. These findings support the notion that the primitive aminoacyl-tRNA synthetases may have been RNAs. In this paper, we propose a structural model for the first aminoacyl-tRNA synthetase consisting of an RNA complex formed between two primitive tRNA molecules through two intermolecular loop-strand interactions, and with implications in the origin of the genetic code.

Statistics and ProbabilityGeneticsGeneral Immunology and MicrobiologyModels GeneticApplied MathematicsRNAAminoacylationGeneral MedicineBiologyGenetic codeenvironment and public healthGeneral Biochemistry Genetics and Molecular Biologyenzymes and coenzymes (carbohydrates)RNA TransferGenetic CodeModeling and SimulationTransfer RNAbacteriaAnimalsGeneral Agricultural and Biological SciencesDimerizationJournal of theoretical biology
researchProduct

Eukaryotic tRNAs(Pro): primary structure of the anticodon loop; presence of 5-carbamoylmethyluridine or inosine as the first nucleoside of the antico…

1990

The modified nucleoside U*, located in the first position of the anticodon of yeast, chicken liver and bovine liver tRNA(Pro) (anticodon U*GG), has been determined by means of TLC, HPLC, ultraviolet spectrum and gas chromatography-mass spectrometry. The structure was established as 5-carbamoylmethyluridine (ncm5U). In addition, we report on the primary structures of the above-mentioned tRNAs as well as those which have the IGG anticodon. In yeast, the two tRNA(Pro) (anticodons U*GG and IGG) differ by eight nucleotides, whereas in chicken and in bovine liver, both anticodons are carried by the same 'body tRNA' with one posttranscriptional exception at position 32, where pseudouridine is asso…

StereochemistryMolecular Sequence DataBiophysicsBiologyBiochemistryPseudouridinechemistry.chemical_compoundRNA Transfer ProRNA TransferStructural BiologyYeastsGeneticsmedicineAnticodonAnimalsNucleotideInosineUridinechemistry.chemical_classificationChromatographyBase SequenceMolecular StructureProtein primary structureFungal geneticsRNARNA FungalRNA Transfer Amino Acid-SpecificInosinechemistryBiochemistryTransfer RNANucleic Acid ConformationCattleSpectrophotometry UltravioletNucleosideChickensmedicine.drugBiochimica et biophysica acta
researchProduct

Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator

2019

Abstract Posttranscriptional RNA modifications occur in all domains of life. Modifications of anticodon bases are of particular importance for ribosomal decoding and proteome homeostasis. The Elongator complex modifies uridines in the wobble position and is highly conserved in eukaryotes. Despite recent insights into Elongator's architecture, the structure and function of its regulatory factor Kti12 have remained elusive. Here, we present the crystal structure of Kti12′s nucleotide hydrolase domain trapped in a transition state of ATP hydrolysis. The structure reveals striking similarities to an O-phosphoseryl-tRNA kinase involved in the selenocysteine pathway. Both proteins employ similar …

TRNA modificationSaccharomyces cerevisiae ProteinsProtein ConformationWobble base pairSaccharomyces cerevisiaeBiologyChaetomiumCrystallography X-Ray03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA TransferATP hydrolysisGeneticsRNA and RNA-protein complexesAnticodonRNA Processing Post-TranscriptionalUridine030304 developmental biologyAdaptor Proteins Signal TransducingAdenosine Triphosphatases0303 health sciencesSelenocysteineRNATRNA bindingCell biologychemistryTransfer RNASelenocysteine incorporationCarrier ProteinsRibosomes030217 neurology & neurosurgery
researchProduct

MODOMICS: a database of RNA modification pathways—2013 update

2012

MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, RNA-modifying enzymes and location of modified residues in RNA sequences. In the current database version, accessible at http://modomics.genesilico.pl, we included new features: a census of human and yeast snoRNAs involved in RNA-guided RNA modification, a new section covering the 5′-end capping process, and a catalogue of ‘building blocks’ for chemical synthesis of a large variety of modified nucleosides. The MODOMICS collections of RNA modifications, RNA-modifying enzymes and modified RNAs have been also updated. A…

TRNA modificationSequence analysisBiologycomputer.software_genre03 medical and health sciences0302 clinical medicineRNA Small NuclearEpitranscriptomicsGeneticsHumansRNA Small NucleolarRNA Processing Post-TranscriptionalSmall nucleolar RNA030304 developmental biologyGeneticsInternet0303 health sciencesDatabaseSequence Analysis RNAMRNA modificationRNAArticlesRibosomal RNAEnzymes3. Good healthTransfer RNARNADatabases Nucleic Acidcomputer030217 neurology & neurosurgeryNucleic Acids Research
researchProduct