Search results for "transistors"
showing 10 items of 68 documents
Supramolecular Order of Solution-Processed Perylenediimide Thin Films
2011
N,N ′ -1 H ,1 H -perfl uorobutyl dicyanoperylenecarboxydiimide (PDIF-CN 2 ), a soluble and air stable n-type molecule, undergoes signifi cant reorganization upon thermal annealing after solution deposition on several substrates with different surface energies. Interestingly, this system exhibits an exceptional edge-on orientation regardless of the substrate chemistry. This preferential orientation is rationalized in terms of strong intermolecular interactions between the PDIF-CN 2 molecules. The presence of a pronounced π– π stacking is confi rmed by combining near-edge X-ray absorption fi ne structure spectroscopy (NEXAFS), dynamic scanning force microscopy (SFM) and surface energy measure…
Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures
2013
This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-…
Current-Driven Organic Electrochemical Transistors for Monitoring Cell Layer Integrity with Enhanced Sensitivity
2021
In this progress report an overview is given on the use of the organic electrochemical transistor (OECT) as a biosensor for impedance sensing of cell layers. The transient OECT current can be used to detect changes in the impedance of the cell layer, as shown by Jimison et al. To circumvent the application of a high gate bias and preventing electrolysis of the electrolyte, in case of small impedance variations, an alternative measuring technique based on an OECT in a current-driven configuration is developed. The ion-sensitivity is larger than 1200 mV V-1 dec-1 at low operating voltage. It can be even further enhanced using an OECT based complementary amplifier, which consists of a p-type a…
Monitoring of Cell Layer Integrity with a Current-Driven Organic Electrochemical Transistor
2019
Abstract The integrity of CaCo-2 cell barriers is investigated by organic electrochemical transistors (OECTs) in a current-driven configuration. Ion transport through cellular barriers via the paracellular pathway is modulated by tight junctions between adjacent cells. Rupturing its integrity by H2O2 is monitored by the change of the output voltage in the transfer characteristics. It is demonstrated that by operating the OECT in a current-driven configuration, the sensitive and temporal resolution for monitoring the cell barrier integrity is strongly enhanced as compared to the OECT transient response measurement. As a result, current-driven OECTs are useful tools to assess dynamic and crit…
Ambipolar MoS2 Transistors by Nanoscale Tailoring of Schottky Barrier Using Oxygen Plasma Functionalization
2017
One of the main challenges to exploit molybdenum disulfide (MoS2) potentialities for the next-generation complementary metal oxide semiconductor (CMOS) technology is the realization of p-type or ambipolar field-effect transistors (FETs). Hole transport in MoS2 FETs is typically hampered by the high Schottky barrier height (SBH) for holes at source/drain contacts, due to the Fermi level pinning close to the conduction band. In this work, we show that the SBH of multilayer MoS2 surface can be tailored at nanoscale using soft O-2 plasma treatments. The morphological, chemical, and electrical modifications of MoS2 surface under different plasma conditions were investigated by several microscopi…
The lower rather than higher density charge carrier determines the NH 3 -sensing nature and sensitivity of ambipolar organic semiconductors
2018
International audience; Despite the extensive studies and great application potentials, the sensing nature of ambipolar organic semiconductor gas sensors still remains unclarified, unlike their inorganic counterparts. Herein, different numbers of thiophenoxy groups are introduced into the phthalocyanine periphery of bis(phthalocyaninato) rare earth semiconductors to continuously tune their HOMO and LUMO energies, resulting in the ambipolar M[Pc(SPh)(8)](2) [M = Eu (1), Ho (2)] and p-type M(Pc)[Pc(SPh)(8)] [M = Eu (3), Ho (4)]. An OFET in combination with direct I-V measurements over the devices from the self-assembled nanostructures of 1-4 revealed the original electron and hole densities (…
Nanoporous kaolin
2017
Cellulose nano- and microfibrils (CNF/CMF) grades vary significantly based on the raw materials and process treatments used. In this study four different CNF/CMF grades were combined with kaolin clay pigment particles to form nanoporous composites. The attained composite properties like porosity, surface smoothness, mechanical properties and density properties depended strongly on the raw materials used. In general, higher kaolin content (~80 wt%) led to controllable shrinkage during drying, which resulted in improved dimensional stability of composites, compared to a lower kaolin content (~50 wt%). On the other hand, the use of a plasticizer and a high amount of CNF/CMF was essential to pr…
Langevin Approach to understand the Noise in Microwave Transistors
2004
A noise analysis procedure for microwave devices based on Langevin approach is presented. The device is represented by its equivalent circuit with the internal noise sources included as stochastic processes. Fromthe circuit network analysis a stochastic integral equation for the output voltage is derived and fromits power spectrumthe noise figure as a function of the operating frequency is obtained. The theoretical results have been compared with experimental data obtained by the characterization of an HEMT transistor series (NE20283A, by NEC) from6 to 18 GHz at a low noise bias point. The reported procedure exhibits good accuracy, within the typical uncertainty range of any experimental de…
Negative differential resistance in carbon nanotube field-effect transistors with patterned gate oxide.
2010
We demonstrate controllable and gate-tunable negative differential resistance in carbon nanotube field-effect transistors, at room temperature and at 4.2 K. This is achieved by effectively creating quantum dots along the carbon nanotube channel by patterning the underlying, high-kappa gate oxide. The negative differential resistance feature can be modulated by both the gate and the drain-source voltage, which leads to more than 20% change of the current peak-to-valley ratio. Our approach is fully scalable and opens up a possibility for a new class of nanoscale electronic devices using negative differential resistance in their operation.
Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure
2016
DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However…