Search results for "transistors"

showing 10 items of 68 documents

Supramolecular Order of Solution-Processed Perylenediimide Thin Films

2011

N,N ′ -1 H ,1 H -perfl uorobutyl dicyanoperylenecarboxydiimide (PDIF-CN 2 ), a soluble and air stable n-type molecule, undergoes signifi cant reorganization upon thermal annealing after solution deposition on several substrates with different surface energies. Interestingly, this system exhibits an exceptional edge-on orientation regardless of the substrate chemistry. This preferential orientation is rationalized in terms of strong intermolecular interactions between the PDIF-CN 2 molecules. The presence of a pronounced π– π stacking is confi rmed by combining near-edge X-ray absorption fi ne structure spectroscopy (NEXAFS), dynamic scanning force microscopy (SFM) and surface energy measure…

Materials scienceSupramolecular chemistryAnalytical chemistryStackingSEMICONDUCTORSsolution processesSCALING BEHAVIORBiomaterialsACTIVE LAYERSElectrochemistryCHARGE-TRANSPORTThin filmn-Type semiconductorcharge injectionIntermolecular forcesupramolecular electronicsThin FilmCondensed Matter Physicsorganic transistorsXANESSurface energyElectronic Optical and Magnetic MaterialsChemical physicsMOBILITYGROWTHMORPHOLOGYSupramolecular electronicsAbsorption (chemistry)FIELD-EFFECT TRANSISTORSCONJUGATED POLYMERSGALLIUM-ARSENIDEAdvanced Functional Materials
researchProduct

Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

2013

This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-…

Materials scienceSupramolecular chemistryNanotechnologyReviewlcsh:Technologysolution processeslaw.inventionelectronic devices solution processes polymers thin filmslawmorphologyGeneral Materials ScienceElectronicsThin filmlcsh:MicroscopyNanoscopic scaleplastic electronicslcsh:QC120-168.85chemistry.chemical_classificationOrganic electronicslcsh:QH201-278.5lcsh:TTransistorPolymerchemistrythin filmsThin-film transistorlcsh:TA1-2040solar cellslcsh:Descriptive and experimental mechanicstransistorslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Current-Driven Organic Electrochemical Transistors for Monitoring Cell Layer Integrity with Enhanced Sensitivity

2021

In this progress report an overview is given on the use of the organic electrochemical transistor (OECT) as a biosensor for impedance sensing of cell layers. The transient OECT current can be used to detect changes in the impedance of the cell layer, as shown by Jimison et al. To circumvent the application of a high gate bias and preventing electrolysis of the electrolyte, in case of small impedance variations, an alternative measuring technique based on an OECT in a current-driven configuration is developed. The ion-sensitivity is larger than 1200 mV V-1 dec-1 at low operating voltage. It can be even further enhanced using an OECT based complementary amplifier, which consists of a p-type a…

Materials scienceTransistors ElectronicBiomedical EngineeringPharmaceutical ScienceElectrolyteBiosensing TechniquesTransistorslaw.inventionBiomaterialsElectrolytesPEDOT:PSSimpedance sensinglawcell layer integrityElectric ImpedanceElectronicPEDOT:PSSHumansElectrical impedanceorganic bioelectronicsElectrolysisbusiness.industryAmplifierTransistorcell layer integrity; impedance sensing; organic bioelectronics; organic electro-chemical transistors; PEDOT:PSS; Caco-2 Cells; Electric Impedance; Electrolytes; Humans; Biosensing Techniques; Transistors ElectronicOptoelectronicsCaco-2 Cellsbusinessorganic electro-chemical transistorsBiosensorOrganic electrochemical transistor
researchProduct

Monitoring of Cell Layer Integrity with a Current-Driven Organic Electrochemical Transistor

2019

Abstract The integrity of CaCo-2 cell barriers is investigated by organic electrochemical transistors (OECTs) in a current-driven configuration. Ion transport through cellular barriers via the paracellular pathway is modulated by tight junctions between adjacent cells. Rupturing its integrity by H2O2 is monitored by the change of the output voltage in the transfer characteristics. It is demonstrated that by operating the OECT in a current-driven configuration, the sensitive and temporal resolution for monitoring the cell barrier integrity is strongly enhanced as compared to the OECT transient response measurement. As a result, current-driven OECTs are useful tools to assess dynamic and crit…

Materials scienceTransistors Electroniccell barriersBiomedical EngineeringPharmaceutical ScienceBiosensing Techniques02 engineering and technologybioelectronics010402 general chemistry01 natural scienceslaw.inventionBiomaterialslawElectrochemistryHumansTransient responseinvertersCell ShapeIon transporterBioelectronicsTight junctionbioelectronics; cell barriers; inverters; organic electrochemical transistors; toxicologybusiness.industryTransistorHydrogen Peroxide021001 nanoscience & nanotechnologyorganic electrochemical transistors0104 chemical sciencesParacellular transportOptoelectronicsCaco-2 Cells0210 nano-technologybusinesstoxicologyVoltageOrganic electrochemical transistor
researchProduct

Ambipolar MoS2 Transistors by Nanoscale Tailoring of Schottky Barrier Using Oxygen Plasma Functionalization

2017

One of the main challenges to exploit molybdenum disulfide (MoS2) potentialities for the next-generation complementary metal oxide semiconductor (CMOS) technology is the realization of p-type or ambipolar field-effect transistors (FETs). Hole transport in MoS2 FETs is typically hampered by the high Schottky barrier height (SBH) for holes at source/drain contacts, due to the Fermi level pinning close to the conduction band. In this work, we show that the SBH of multilayer MoS2 surface can be tailored at nanoscale using soft O-2 plasma treatments. The morphological, chemical, and electrical modifications of MoS2 surface under different plasma conditions were investigated by several microscopi…

Materials scienceambipolar transistorsSchottky barrierDFT calculationNanotechnology02 engineering and technologyDFT calculations01 natural scienceschemistry.chemical_compoundX-ray photoelectron spectroscopy0103 physical sciencesScanning transmission electron microscopyGeneral Materials ScienceSchottky barrierMolybdenum disulfide010302 applied physicsAmbipolar diffusionElectron energy loss spectroscopyConductive atomic force microscopy021001 nanoscience & nanotechnologyconductive atomic force microscopyatomic resolution STEMchemistryambipolar transistorSurface modificationMaterials Science (all)0210 nano-technologyMoS2
researchProduct

The lower rather than higher density charge carrier determines the NH 3 -sensing nature and sensitivity of ambipolar organic semiconductors

2018

International audience; Despite the extensive studies and great application potentials, the sensing nature of ambipolar organic semiconductor gas sensors still remains unclarified, unlike their inorganic counterparts. Herein, different numbers of thiophenoxy groups are introduced into the phthalocyanine periphery of bis(phthalocyaninato) rare earth semiconductors to continuously tune their HOMO and LUMO energies, resulting in the ambipolar M[Pc(SPh)(8)](2) [M = Eu (1), Ho (2)] and p-type M(Pc)[Pc(SPh)(8)] [M = Eu (3), Ho (4)]. An OFET in combination with direct I-V measurements over the devices from the self-assembled nanostructures of 1-4 revealed the original electron and hole densities (…

Materials sciencematerials designoxidizing no2Analytical chemistry02 engineering and technologyElectronthin-film transistors010402 general chemistry01 natural scienceslangmuir-blodgett-filmsgas sensorchemistry.chemical_compoundMaterials Chemistry[CHIM]Chemical SciencesGeneral Materials Sciencemolecular materialsHOMO/LUMOcopper-phthalocyanineOrganic field-effect transistorAmbipolar diffusionbusiness.industryfield-effect transistorschemical sensors021001 nanoscience & nanotechnology0104 chemical sciencesOrganic semiconductorSemiconductorchemistryPhthalocyanineCharge carrierdecker complexes0210 nano-technologybusiness
researchProduct

Nanoporous kaolin

2017

Cellulose nano- and microfibrils (CNF/CMF) grades vary significantly based on the raw materials and process treatments used. In this study four different CNF/CMF grades were combined with kaolin clay pigment particles to form nanoporous composites. The attained composite properties like porosity, surface smoothness, mechanical properties and density properties depended strongly on the raw materials used. In general, higher kaolin content (~80 wt%) led to controllable shrinkage during drying, which resulted in improved dimensional stability of composites, compared to a lower kaolin content (~50 wt%). On the other hand, the use of a plasticizer and a high amount of CNF/CMF was essential to pr…

Materials scienceporosityComposite number02 engineering and technologysubstrateRaw material010402 general chemistry01 natural sciencesNanocellulosechemistry.chemical_compoundcompositeElectrical and Electronic EngineeringCelluloseComposite materialPorosityNatural fibernanocelluloseShrinkageroughnessNanoporous021001 nanoscience & nanotechnology0104 chemical sciencesElectronic Optical and Magnetic Materialschemistrykaolin pigmenttransistors0210 nano-technologycellulose nanofibrils (CNF)Flexible and Printed Electronics
researchProduct

Langevin Approach to understand the Noise in Microwave Transistors

2004

A noise analysis procedure for microwave devices based on Langevin approach is presented. The device is represented by its equivalent circuit with the internal noise sources included as stochastic processes. Fromthe circuit network analysis a stochastic integral equation for the output voltage is derived and fromits power spectrumthe noise figure as a function of the operating frequency is obtained. The theoretical results have been compared with experimental data obtained by the characterization of an HEMT transistor series (NE20283A, by NEC) from6 to 18 GHz at a low noise bias point. The reported procedure exhibits good accuracy, within the typical uncertainty range of any experimental de…

Microwave Transistors
researchProduct

Negative differential resistance in carbon nanotube field-effect transistors with patterned gate oxide.

2010

We demonstrate controllable and gate-tunable negative differential resistance in carbon nanotube field-effect transistors, at room temperature and at 4.2 K. This is achieved by effectively creating quantum dots along the carbon nanotube channel by patterning the underlying, high-kappa gate oxide. The negative differential resistance feature can be modulated by both the gate and the drain-source voltage, which leads to more than 20% change of the current peak-to-valley ratio. Our approach is fully scalable and opens up a possibility for a new class of nanoscale electronic devices using negative differential resistance in their operation.

NanostructureMaterials scienceTransistors ElectronicMacromolecular SubstancesSurface PropertiesMolecular ConformationGeneral Physics and AstronomyNanotechnologyCarbon nanotubelaw.inventionComputer Science::Emerging TechnologiesGate oxidelawMaterials TestingElectric ImpedanceNanotechnologyGeneral Materials ScienceParticle SizeTransistorGeneral EngineeringOxidesEquipment DesignCondensed Matter::Mesoscopic Systems and Quantum Hall EffectNanostructuresEquipment Failure AnalysisHysteresisQuantum dotField-effect transistorCrystallizationVoltageACS nano
researchProduct

Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure

2016

DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However…

NanostructureMaterials scienceTransistors Electronicta221Metal NanoparticlesElectronsBioengineeringNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesnanoelectronicsNanobiotechnologyGeneral Materials ScienceA-DNAParticle Sizeta114Mechanical EngineeringTemperatureCoulomb blockadeDNA structureDNAGeneral ChemistryDielectrophoresis021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesCharacterization (materials science)NanoelectronicsColloidal goldGold0210 nano-technologyDimerizationNano Letters
researchProduct