Search results for "winemaking."

showing 10 items of 152 documents

A Comparative Study of Different Methods of Yeast Strain Characterization

1992

Summary An extensive survey of different methods of yeast strain identification (classical microbiological tests, whole-cell protein electrophoresis, chromosomal patterns, DNA hybridization and mitochondrial DNA restriction analysis) has been carried out in order to differentiate, with industrial purposes, strains present in the Alicante wine ecosystem. Only chromosomal patterns and mitochondrial DNA (mtDNA) restriction analysis show differences between strains. Both techniques are very complex to be used in bio technological industries. For this reason, we have developed a new, simple, unexpensive and rapid method based on mtDNA restriction analysis.

Gel electrophoresisGeneticsMitochondrial DNAbiologyDNA–DNA hybridizationSaccharomyces cerevisiaebiology.organism_classificationApplied Microbiology and BiotechnologyMicrobiologyYeastRestriction fragmentYeast in winemakingRestriction mapbiology.proteinEcology Evolution Behavior and SystematicsSystematic and Applied Microbiology
researchProduct

Molecular Characterization of a Chromosomal Rearrangement Involved in the Adaptive Evolution of Yeast Strains

2002

Wine yeast strains show a high level of chromosome length polymorphism. This polymorphism is mainly generated by illegitimate recombination mediated by Ty transposons or subtelomeric repeated sequences. We have found, however, that the SSU1-R allele, which confers sulfite resistance to yeast cells, is the product of a reciprocal translocation between chromosomes VIII and XVI due to unequal crossing-over mediated by microhomology between very short sequences on the 5' upstream regions of the SSU1 and ECM34 genes. We also show that this translocation is only present in wine yeast strains, suggesting that the use for millennia of sulfite as a preservative in wine production could have favored …

Genetic MarkersSaccharomyces cerevisiae ProteinsLetterChromosomal rearrangementsAnion Transport ProteinsGenes FungalMolecular Sequence DataSaccharomyces cerevisiaeSaccharomyces cerevisiaeChromosomal rearrangementSaccharomycesGenètica molecularTranslocation GeneticEvolution MolecularSaccharomycesGene FrequencySpecies SpecificityGeneticsVinificationDNA FungalGeneGenetics (clinical)Wine yeastsGene RearrangementRecombination GeneticGeneticsBase SequencebiologyGene rearrangementbiology.organism_classificationYeastYeast in winemakingChromosomes FungalGenome FungalPloidyGenome Research
researchProduct

Adaptive response to wine selective pressures shapes the genome of a Saccharomyces interspecies hybrid

2021

During industrial processes, yeasts are exposed to harsh conditions, which eventually lead to adaptation of the strains. In the laboratory, it is possible to use experimental evolution to link the evolutionary biology response to these adaptation pressures for the industrial improvement of a specific yeast strain. In this work, we aimed to study the adaptation of a wine industrial yeast in stress conditions of the high ethanol concentrations present in stopped fermentations and secondary fermentations in the processes of champagne production. We used a commercial Saccharomyces cerevisiae × S. uvarum hybrid and assessed its adaptation in a modified synthetic must (M-SM) containing high ethan…

GeneticsFermentation in winemakingWine0303 health sciencesExperimental evolutionStrain (chemistry)030306 microbiologySaccharomyces cerevisiaeGeneral MedicineSaccharomyces cerevisiaeBiologybiology.organism_classificationGenome sequencingSaccharomycesSaccharomyces uvarumYeast03 medical and health sciencesS. uvarumArtificial hybridAdaptationAdaptationRNA-seq030304 developmental biology
researchProduct

A novel approach for the improvement of stress resistance in wine yeasts

2006

During wine production yeast cells are affected by several stress conditions that could affect their viability and fermentation efficiency. In this work we describe a novel genetic manipulation strategy designed to improve stress resistance in wine yeasts. This strategy involves modifying the expression of the transcription factor MSN2, which plays an important role in yeast stress responses. The promoter in one of the genomic copies of this gene has been replaced by the promoter of the SPI1 gene, encoding for a cell wall protein of unknown function. SPI1 is expressed at late phases of growth and is regulated by Msn2p. This modification allows self-induction of MSN2 expression. MSN2 gene tr…

GeneticsWineSPI1TemperatureRNA FungalWineSaccharomyces cerevisiaeGeneral MedicineBiologyMicrobiologyYeastGenetically modified organismCell biologyIndustrial MicrobiologyKineticsYeast in winemakingStress PhysiologicalGene Expression Regulation FungalFermentationHumansViability assayGeneTranscription factorFood ScienceInternational Journal of Food Microbiology
researchProduct

Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions

2008

Throughout wine production yeast cells are affected by a plethora of stress conditions that compromise their ability to carry out the whole process. In recent years important knowledge about the mechanisms involved in stress response in both laboratory and wine yeast strains has been obtained. Several studies have indicated that a correlation exists between stress resistance, expression of stress response genes and fermentative behaviour. In this work we introduce several genetic manipulations in two genes induced by several stress conditions: HSP26 (which encodes a heat shock protein) and YHR087W (encoding a protein of unknown function) in two different wine yeasts, ICV16 and ICV27. These …

GeneticsWineSaccharomyces cerevisiae ProteinsTime FactorsSPI1CentromereRNA-Binding ProteinsWineSaccharomyces cerevisiaeGeneral MedicineBiologyMicrobiologyYeastYeast in winemakingPlasmidYeastsHeat shock proteinFermentationGene expressionPromoter Regions GeneticGeneHeat-Shock ProteinsPlasmidsFood ScienceInternational Journal of Food Microbiology
researchProduct

Evaluation of different genetic procedures for the generation of artificial hybrids in Saccharomyces genus for winemaking

2012

Several methods based on recombinant DNA techniques have been proposed for yeast strain improvement; however, the most relevant oenological traits depend on a multitude of loci, making these techniques difficult to apply. In this way, hybridization techniques involving two complete genomes became interesting. Natural hybrid strains between different Saccharomyces species have been detected in diverse fermented beverages including wine, cider and beer. These hybrids seem to be better adapted to fluctuating situations typically observed in fermentations due to the acquisition of particular physiological properties of both parental strains. In this work we evaluated the usefulness of three dif…

GeneticsbiologyDNA RecombinantGenetic VariationWineGeneral MedicineProtoplastbiology.organism_classificationMicrobiologySaccharomycesGenetically modified organismBeveragesSaccharomycesYeast in winemakingYeast DriedYeastsFermentationGenetic variationHybridization GeneticGenetic variabilitySaccharomyces kudriavzeviiFood ScienceHybridInternational Journal of Food Microbiology
researchProduct

Comparative Transcriptomic Analysis Reveals Similarities and Dissimilarities in Saccharomyces cerevisiae Wine Strains Response to Nitrogen Availabili…

2015

Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12 h, 24 h and 96 h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The…

GenotypeNitrogenScienceSaccharomyces cerevisiaeDown-RegulationIndustrial fermentationWineSaccharomyces cerevisiaePolymerase Chain Reaction03 medical and health sciencesTranscripció genèticaCluster AnalysisDNA FungalNitrogen cycle030304 developmental biologyWinemaking2. Zero hungerWine0303 health sciencesMultidisciplinarybiology030306 microbiologyGene Expression ProfilingQRfood and beveragesbiology.organism_classificationYeastUp-RegulationGene expression profilingPhenotypeBiochemistryFermentationMedicineFermentationTranscriptomeResearch ArticlePLoS ONE
researchProduct

Physiological properties of some yeast strains

2006

Twenty yeast strains have recently been isolated in pure cultures from natural and industrial sources and identified based mainly on physiological properties. The majority of the strains (15) are alcohologenic belonging to the genus Saccharomyces and comprise two brewer's (beer) yeast strains (S. carlsbergensis= S. uvarum A and B), two baker's yeast strains (S. cerevisiae CA and CP), one spirit yeast strain (S. cerevisiae CF) and ten wine yeast strains (S. cerevisiae var. ellipsoideus = S. ellipsoideus 1, 3, 4, 6, 8 and 9; S. oviformis 2, 5 and 7; and S. uvarum 10). The other 5 yeast strains belong to different species: Kloeckera apiculate, Candida mycoderma (Mycoderma vini), Pichia membran…

Genus SaccharomycesCarbohydratesfood and beveragesBiologyYeast strainRhodotorulabiology.organism_classificationGeneral Biochemistry Genetics and Molecular BiologyYeastMicrobiologyYeast in winemakingNeurologyAlcoholsYeastsFermentationFood MicrobiologyFood microbiologyFermentationCell ShapePichia membranaefaciensGeneral Environmental ScienceActa Biologica Hungarica
researchProduct

The Antarctic yeast Candida sake: Understanding cold metabolism impact on wine

2017

Current winemaking trends include low-temperature fermentations and using non-Saccharomyces yeasts as the most promising tools to produce lower alcohol and increased aromatic complexity wines. Here we explored the oenological attributes of a C. sake strain, H14Cs, isolated in the sub-Antarctic region. As expected, the cold sea water yeast strain showed greater cold growth, Na+-toxicity resistance and freeze tolerance than the S. cerevisiae QA23 strain, which we used as a commercial wine yeast control. C. sake H14Cs was found to be more sensitive to ethanol. The fermentation trials of low-sugar content must demonstrated that C. sake H14Cs allowed the cold-induced lag phase of growth to be el…

Glycerol0301 basic medicine030106 microbiologyAroma of wineWineSugars in wineFructoseSaccharomyces cerevisiaeBiologyMicrobiology03 medical and health sciencesYeast DriedMalolactic fermentationBiomassFood scienceCandidaWinemakingWineFermentation in winemakingEthanolSodiumfood and beveragesGeneral MedicineWine faultCulture MediaCold TemperatureYeast in winemakingGlucoseFermentationFood ScienceInternational Journal of Food Microbiology
researchProduct

Molecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces cerevisiae hybrid

2015

Available online 17 March 2015

GlycerolOtras Ciencias BiológicasSaccharomyces cerevisiaeHybridsWineSaccharomyces cerevisiaeMicrobiologyAliments MicrobiologiaCiencias BiológicasSaccharomycesSaccharomyces paradoxusFermentacióTranscriptomicsAromaAcetic AcidHybridWinemakingWineGenomebiologyStrain (chemistry)ChimeraGeneral Medicinebiology.organism_classificationYeastBiochemistryFermentationHybridization GeneticTranscriptomeCIENCIAS NATURALES Y EXACTASFood Science
researchProduct