Search results for "yeast"

showing 10 items of 792 documents

Hierarchy of factors impacting grape berry mass: separation of direct and indirect effects on major berry metabolites

2018

Final berry mass, a major quality factor in wine production, is determined by the integrated effect of biotic and abiotic factors that can also influence berry composition. Under field conditions, interactions between these factors complicate study of the variability of berry mass and composition. Depending on the observation scale, the hierarchy of the impact degree of these factors can vary. The present work examines the simultaneous effects of the major factors influencing berry mass and composition to create a hierarchy by impact degree. A second objective was to separate the possible direct effects of factors on berry composition from an indirect effect mediated through their impact on…

0106 biological sciencesVineBerryHorticulture01 natural sciencesBerry seed040501 horticultureVeraisonchemistry.chemical_compoundSoilBotanySugarBerry maAbiotic componentYeast assimilable nitrogen (YAN)ViruBerry composition; Berry mass; Berry seed; Soil; Vine water status; Virus; Yeast assimilable nitrogen (YAN);food and beverages04 agricultural and veterinary sciences15. Life on landIndirect effectSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeHorticulturechemistryBerry compositionComposition (visual arts)Malic acidVine water statu0405 other agricultural sciences010606 plant biology & botanyFood Science
researchProduct

Effect of acyl-CoA oxidase activity on the accumulation of gamma-decalactone by the yeast Yarrowia lipolytica: a factorial approach.

2007

International audience; beta-Oxidation is a cyclic pathway involved in the degradation of lipids. In yeast, it occurs in peroxisomes and the first step is catalyzed by an acyl-CoA oxidase (Aoxp). The yeast Yarrowia lipolytica possesses several genes (POX) coding for Aoxps. This study is based on the factorial analysis of results obtained with the many POX derivative strains that have been constructed previously. The effect of interactions between Aoxps on the acyl-CoA oxidase (Aox) activity was important even at the second order. We then investigated the effect of Aox activity on growth and lactone production. Aox activity was correlated with acidification of the medium by cells and with ce…

0106 biological sciencesYarrowia lipolyticaMESH: Enzyme ActivationMetabolic Clearance RateMESH: Factor Analysis StatisticalYarrowiaBiologymodèleModels Biological01 natural sciencesApplied Microbiology and BiotechnologyLactones03 medical and health sciencesEnzyme activatorSpecies SpecificityMESH: Computer Simulation010608 biotechnologyCombinatorial Chemistry TechniquesAcyl-CoA oxidaseMESH: Species SpecificityComputer Simulation030304 developmental biologychemistry.chemical_classificationMESH: Metabolic Clearance Rate0303 health sciencesOxidase testmétabolisme des acides grasAcyl-CoA oxidase activityMESH: Acyl-CoA OxidaseMESH: Models BiologicalYarrowia[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral MedicinePeroxisomebiology.organism_classificationYeastEnzyme ActivationBiochemistrychemistrylactoneMolecular MedicineMESH: Combinatorial Chemistry TechniquesMESH: YarrowiaAcyl-CoA OxidaseFactor Analysis StatisticalLactoneMESH: Lactones
researchProduct

An air-lift biofilm reactor for the production of γ-decalactones by Yarrowia lipolytica

2014

Decalactones are interesting flavouring compounds that can be produced from ricinoleic acid. In this study, the production of lactones in biofilms using Yarrowia lipolytica is investigated. The hydrophobia of cells increased for increased aeration rates resulting in higher adhesion when the reactor wall was hydrophobic (plastic). To increase adhesion, sheets of methyl-polymethacrylate (PMMA) were added in the reactor and the production of lactones increased with the surface of plastic added, reaching 850 mg/L of 3-hydroxy-γ-decalactone for 60 cm2. In an Airlift bioreactor made of PMMA, biofilms were present at the top of the reactor for increased aeration. In the meantime, a metabolic shift…

0106 biological sciencesYarrowia lipolytica[SDV]Life Sciences [q-bio]Ricinoleic acidBioengineeringHydrophobiaβ-Oxidation01 natural sciencesApplied Microbiology and BiotechnologyBiochemistryBiofilm reactor03 medical and health scienceschemistry.chemical_compound010608 biotechnologySurface properties[SDV.IDA]Life Sciences [q-bio]/Food engineeringBioreactorß-Oxidationcvg030304 developmental biology0303 health sciencesScience & TechnologybiologyChemistryLipid biotransformationcvg.computer_videogameAirliftBiofilmYarrowiabiology.organism_classification6. Clean waterYeastChemical engineeringBiochemistryAerationAroma production
researchProduct

Production of 3-hydroxy-γ-decalactone, the precursor of two decenolides with flavouring properties, by the yeast Yarrowia lipolytica

2009

3-Hydroxy-γ-decalactone is the precursor of dec-2 and dec-3-en-4-olides which are valuable aroma compounds not yet produced. To promote the accumulation of this lactone, the yeast Yarrowia lipolytica was placed in different environmental conditions aiming at altering β-oxidation fluxes. The concentration of substrate, pH, aeration and dissolved oxygen level were modified. We observed an important accumulation at low aeration (0.40 molar yields) and, to a lesser extent, at lower pH (0.15). As oxygen played a key-role, we evaluated its effect at fixed dissolved oxygen and at the pH which was the most favourable to the biotransformation (pH 4.5). At 5% and 30% dissolved oxygen, yields reached …

0106 biological sciencesYarrowia lipolyticachemistry.chemical_elementBioengineering3-Hydroxy-gamma-decalactone01 natural sciencesBiochemistryOxygenCatalysis03 medical and health sciencesBiotransformation010608 biotechnologyOrganic chemistryAroma030304 developmental biology2. Zero hungerchemistry.chemical_classification0303 health sciencesScience & TechnologybiologyProcess Chemistry and Technologyβ-Oxidation fluxesSubstrate (chemistry)Yarrowiabiology.organism_classificationYeastOxygenchemistry3-Hydroxy-γ-decalactoneAerationLactonebeta-Oxidation fluxes
researchProduct

Medium-size droplets of methyl ricinoleate are reduced by cell-surface activity in the gamma-decalactone production by Yarrowia lipolytica.

2000

International audience; Size of methyl ricinoleate droplets during biotransformation into gamma-decalactone by Yarrowia lipolytica was measured in both homogenized and non-homogenized media. In non-homogenized but shaken medium, droplets had an average volume surface diameter d32 of 2.5 microm whereas it was 0.7 microm in homogenized and shaken medium. But as soon as yeast cells were inoculated, both diameters became similar at about 0.7 microm and did not vary significantly until the end of the culture. The growth of Y. lipolytica in both media was very similar except for the lag phase which was lowered in homogenized medium conditions.

0106 biological sciences[SDV.BIO]Life Sciences [q-bio]/BiotechnologyTime FactorsCell01 natural sciencesApplied Microbiology and BiotechnologyLactonesBiotransformationMESH : Particle SizeYeastsMESH: Microscopy Confocal[INFO.INFO-BT]Computer Science [cs]/BiotechnologyComputingMilieux_MISCELLANEOUSBiotransformation0303 health sciencesMicroscopyMicroscopy ConfocalbiologyMESH: YeastsMESH : Lactones[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitologymedicine.anatomical_structureBiochemistryConfocalSURFACE ACTIVERicinoleic Acids[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: LactonesMESH : Time Factors03 medical and health sciencesMESH : Biotransformation010608 biotechnologymedicine[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Particle SizeParticle SizeMESH : Microscopy Confocal[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMethyl ricinoleateMESH: BiotransformationMESH : YeastsChromatography030306 microbiologyMESH: Time Factors[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyYarrowiabiology.organism_classificationYeastMESH: Ricinoleic AcidsCulture Media[SDV.BIO] Life Sciences [q-bio]/Biotechnology[INFO.INFO-BT] Computer Science [cs]/BiotechnologyMESH : Ricinoleic AcidsMESH: Culture MediaMESH : Culture Media
researchProduct

Wine Fermentation

2019

Currently wineries are facing new challenges due to actual market demands for creation of products exhibiting more individual flavors[...]

0106 biological scienceslcsh:TP500-660oenological enzymes<i>Lachancea</i>color intensityyeast hybrids04 agricultural and veterinary sciencesPlant Scienceprocess controllcsh:Fermentation industries. Beverages. Alcohol040401 food science01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)metabolomics0404 agricultural biotechnologyextraction methods010608 biotechnologyphenolic content<i>Saccharomyces</i>sulfur compoundsFood ScienceFermentation
researchProduct

Anhydrobiosis: Inside yeast cells

2018

International audience; Under natural conditions yeast cells as well as other microorganisms are regularly subjected to the influence of severe drought, which leads to their serious dehydration. The dry seasons are then changed by rains and there is a restoration of normal water potential inside the cells. To survive such seasonal changes a lot of vegetative microbial cells, which belong to various genera and species, may be able to enter into a state of anhydrobiosis, in which their metabolism is temporarily and reversibly suspended or delayed. This evolutionarily developed adaptation to extreme conditions of the environment is widely used for practical goals - for conservation of microorg…

0106 biological scienceslipid-phaseCell Survivaldesiccation toleranceMicroorganismBiophysicsBioengineeringSaccharomyces cerevisiaeBiology01 natural sciencesApplied Microbiology and BiotechnologyDehydration-rehydrationDesiccation tolerance03 medical and health scienceswine yeastIntracellular protective reactions010608 biotechnology[SDV.IDA]Life Sciences [q-bio]/Food engineeringOrganelle[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineeringwater replacement hypothesisLaboratorium voor PlantenfysiologieDesiccationCryptobiosismembrane phase-transitions030304 developmental biology0303 health sciencesDehydrationWaterendoplasmic-reticulumplasma-membraneAnhydrobiosisYeastYeastDehydration–rehydrationYeast in winemaking[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyBiofysicaCellular MicroenvironmentIntracellular changesBiochemistryglass-transitioncandida-utilis cellsEPSAdaptationDesiccationsaccharomyces-cerevisiae cellsLaboratory of Plant PhysiologyBiotechnologyBiotechnology Advances
researchProduct

Optimization of Synthetic Media Composition for Kluyveromyces marxianus Fed-Batch Cultivation

2021

The Kluyveromyces marxianus yeast recently has gained considerable attention due to its applicability in high-value-added product manufacturing. In order to intensify the biosynthesis rate of a target product, reaching high biomass concentrations in the reaction medium is mandatory. Fed-batch processes are an attractive and efficient way how to achieve high cell densities. However, depending on the physiology of the particular microbial strain, an optimal media composition should be used to avoid by-product synthesis and, subsequently, a decrease in overall process effi-ciency. Thus, the aim of the present study was to optimise the synthetic growth medium and feeding solution compositions (…

0106 biological sciencesmodel predictive control (MPC)BiomassPlant Science<i>Kluyveromyces marxianus</i>; 2-phenylethanol; fed-batch; cultivation; bioreactor; model predictive control (MPC)01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)03 medical and health scienceschemistry.chemical_compoundbioreactorKluyveromyces marxianusfed-batch010608 biotechnologyBioreactorFood science030304 developmental biology0303 health sciencesGrowth mediumlcsh:TP500-660biologyChemistrySubstrate (chemistry)biology.organism_classificationlcsh:Fermentation industries. Beverages. AlcoholYeastcultivationYield (chemistry)Composition (visual arts)<i>Kluyveromyces marxianus</i>Food Science2-phenylethanolFermentation
researchProduct

Analysis of Possibility of Yeast Production Increase at Maintained Carbon Dioxide Emission Level

2016

Abstract Main parameters polluting of technological wastewater (dregs from decantation and thicken of the wort) from yeast industry are: nitrogen, potassium and COD. Such wastewater are utilized mostly on agricultural fields. Unfortunately, these fields can only accept a limited amount of wastes. The basic parameter limiting there the amount of wastewater is nitrogen. When capacity of the production is large sewages are often pretreated at an evaporator station. However, due to the fairly high running costs of the evaporator station currently such a solution is applied only to a small amount of wastes (just to meet legal requirements). Replacement of the earth gas with a biomass being suppl…

0211 other engineering and technologies02 engineering and technology010501 environmental sciencesyeast01 natural scienceschemistry.chemical_compoundtechnological wastewater treatmentEnvironmental protectionBotanyProduction (economics)Business managementrenewable energy sourcesenvironmental protection0105 earth and related environmental sciencesproduction increase021110 strategic defence & security studiesenvironmental engineeringbusiness.industryGeneral Medicineenvironmental protection.TA170-171YeastRenewable energychemistryCarbon dioxideEnvironmental sciencebusinessCivil and Environmental Engineering Reports
researchProduct

Unconventional yeast in the degradation of hydrocarbons in contaminated soil

2018

The influence of Yarrowia lipolytica inoculum on biodegradation of hydrocarbons, and changes in microbiota composition in the soil contaminated with petroleum have been investigated. The material under study was contaminated clay soil, containing petroleum-derived substances at approximately 17 000 [mg/kg d. m.]. Microbiological analysis was carried out by the cultivation method and the content of individual hydrocarbons (n-aliphatic, BTEX and PAHs) was determined by the GC/MS method. The largest decrease of oil-derived substances, versus the control sample, was recorded at the beginning of the process. During the first 30 days, the yeast inoculation caused most effectively removal of n-ali…

021110 strategic defence & security studiesEnvironmental EngineeringChemistryEnvironmental chemistry0211 other engineering and technologiesDegradation (geology)02 engineering and technology010501 environmental sciences01 natural sciencesWaste Management and DisposalSoil contaminationYeast0105 earth and related environmental sciencesEnvironment Protection Engineering
researchProduct