0000000000004637
AUTHOR
Efrén Navarro-moratalla
Proposal for a Dual Spin Filter Based on [VO(C 3 S 4 O) 2 ] 2–
Polynuclear magnetic molecules often present dense electronic transmission spectra with many overlapping conduction spin channels. Single-metal complexes display a sparser density of states, which in the presence of a fixed external magnetic field makes them interesting candidates for spin filtering. Here we perform a DFT study of a family of bis- and tris-dithiolate vanadium complexes sandwiched between Au(111) electrodes and demonstrate that [VO(C3S4O)2]2– can behave as a dual spin filter. This means that an external electrical stimulus can switch between the selective transmission of spin-up and spin-down carriers. By using an electrostatic gate, we show that the onset for the spin-up co…
Deep-Learning-Enabled Fast Optical Identification and Characterization of 2D Materials.
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Advanced microscopy and/or spectroscopy tools play indispensable roles in nanoscience and nanotechnology research, as they provide rich information about material processes and properties. However, the interpretation of imaging data heavily relies on the “intuition” of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations. Such challenges can be well addressed by deep learning. In this work, the optical characterization of 2D materials is used as a case study, and a neural-network-based algorithm is de…
Nanofabrication of TaS2 conducting layers nanopatterned with Ta2O5 insulating regions via AFM
It is demonstrated how local oxidation nanolithography performed with an atomic force microscope (AFM-LON) may be successfully employed for the nanopatterning of insulating regions of Ta2O5 on TaS2 ultrathin metallic layers. This provides a simple approach for the fabrication of electronic devices, such as single-electron transistors, at the nanoscale.
Enhanced superconductivity in atomically thin TaS2
The ability to exfoliate layered materials down to the single layer limit has presented the opportunity to understand how a gradual reduction in dimensionality affects the properties of bulk materials. Here we use this top–down approach to address the problem of superconductivity in the two-dimensional limit. The transport properties of electronic devices based on 2H tantalum disulfide flakes of different thicknesses are presented. We observe that superconductivity persists down to the thinnest layer investigated (3.5 nm), and interestingly, we find a pronounced enhancement in the critical temperature from 0.5 to 2.2 K as the layers are thinned down. In addition, we propose a tight-binding …
The Use of Polyoxometalates in the Design of Layer‐Like Hybrid Salts Containing Cationic Mn 4 Single‐Molecule Magnets
Herein, we describe the combination of polyoxometalates (POMs) with a polynuclear metallic cluster Mn4 {Mn4 = [Mn4(OAc)2(pdmH)6]2+, (pdmH = deprotonated pyridine-2,6-dimethanol; C7H8NO2)} for the construction of ionic crystals with layered architectures. Choosing a POM with the appropriate charge and size not only allows for the fine tuning of the stacking periodicity, but it also allows modifying the in-plane packing motif and density of the cationic metallic clusters. The isolation of differently layered hybrid crystals with the same Mn4 single-molecule-magnet (SMM) system allowed for the direct comparison of the magnetic properties of such materials. The variation of the slow relaxation …
Confined growth of cyanide-based magnets in two dimensions
Herein we report the first hybrid magnetic material resulting from the intercalation of a cyanide-based molecular magnet into a solid-state layered host. More specifically, the use of a diamagnetic cationic Zn(II)-Al(lII) layered double hydroxide host allows for the formation of an anionic two-dimensional ferromagnetic Ni(II)-Cr(III) Prussian Blue analogue, from the templated assembly of its ionic molecular components in the confined interlamellar space offered by the inorganic host.
Coexistence of superconductivity and magnetism by chemical design.
Although the coexistence of superconductivity and ferromagnetism in one compound is rare, some examples of such materials are known to exist. Methods to physically prepare hybrid structures with both competing phases are also known, which rely on the nanofabrication of alternating conducting layers. Chemical methods of building up hybrid materials with organic molecules (superconducting layers) and metal complexes (magnetic layers) have provided examples of superconductivity with some magnetic properties, but not fully ordered. Now, we report a chemical design strategy that uses the self assembly in solution of macromolecular nanosheet building blocks to engineer the coexistence of supercon…
Monolayer-to-Mesoscale Modulation of the Optical Properties in 2D CrI3 Mapped by Hyperspectral Microscopy
Nanomagnets: Quantum Rescaling, Domain Metastability, and Hybrid Domain‐Walls in 2D CrI 3 Magnets (Adv. Mater. 5/2021)
Scanning tunneling measurements of layers of superconducting 2H-TaSe2: Evidence for a zero-bias anomaly in single layers
This work was supported by the EU (ERC Advanced Grant SPINMOL and COST MP-1201), the Spanish MINECO (Consolider-Ingenio in Molecular Nanoscience, CSD2007-00010 and projects FIS2011-23488, MAT2011-25046, MAT2011-22785 and ACI-2009-0905, co-financed by FEDER), by the Comunidad de Madrid (program Nanobiomagnet) and the Generalitat Valenciana (Programs Prometeo and ISIC-NANO)
Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets
The mechanical properties of magnetic materials are instrumental for the development of the magnetoelastic theory and the optimization of strain-modulated magnetic devices. In particular, two-dimensional (2D) magnets hold promise to enlarge these concepts into the realm of low-dimensional physics and ultrathin devices. However, no experimental study on the intrinsic mechanical properties of the archetypal 2D magnet family of the chromium trihalides has thus far been performed. Here, we report the room temperature layer-dependent mechanical properties of atomically thin CrI3 and CrCl3, finding that bilayers of CrI3 and CrCl3 have Young's moduli of 62.1 GPa and 43.4 GPa, with the highest sust…
Strong enhancement of superconductivity at high pressures within the charge-density-wave states of2H−TaS2and2H−TaSe2
We present measurements of the superconducting and charge density wave critical temperatures (Tc and TCDW) as a function of pressure in the transition metal dichalchogenides 2H-TaSe2 and 2H-TaS2. Resistance and susceptibility measurements show that Tc increases from temperatures below 1 K up to 8.5 K at 9.5 GPa in 2H-TaS2 and 8.2 K at 23 GPa in 2H-TaSe2. We observe a kink in the pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in transition from incommensurate CDW to commensurate CDW. Above this pressure, the commensurate TCDW slowly decreases coexisting with superconductivity within our full pressure range.
Intercalation of [M(ox)3]3− (M=Cr, Rh) complexes into NiIIFeIII-LDH
Abstract Layered Double Hydroxides (LDH) containing paramagnetic NiII and FeIII ions in the hydroxide layers and chromium or rhodium oxalate complexes at the interlayer space were prepared by ion exchange from a NiFe-LDH precursor with sebacate anions between the hydroxide layers. The precursor was synthesized by coprecipitation at controlled pH in order to avoid the formation of solid phases different from LDH. Magnetic studies demonstrated that both LDHs, NiFe–Cr(ox)3 and NiFe–Rh(ox)3, exhibited a behaviour similar to the precursor. Nevertheless, the substitution of intercalated sebacate anions with oxalate complexes compresses the LDH basal spacing, increasing the intensity of dipolar in…
Quantum Rescaling, Domain Metastability, and Hybrid Domain-Walls in 2D CrI3 Magnets
Higher-order exchange interactions and quantum effects are widely known to play an important role in describing the properties of low-dimensional magnetic compounds. Here, the recently discovered 2D van der Waals (vdW) CrI3 is identified as a quantum non-Heisenberg material with properties far beyond an Ising magnet as initially assumed. It is found that biquadratic exchange interactions are essential to quantitatively describe the magnetism of CrI3 but quantum rescaling corrections are required to reproduce its thermal properties. The quantum nature of the heat bath represented by discrete electron–spin and phonon–spin scattering processes induces the formation of spin fluctuations in the …
Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2probed by scanning tunneling spectroscopy
We report an anomalous tunneling conductance with a zero-bias peak in flakes of superconducting 2$H$-${\mathrm{TaS}}_{2}$ detached through mechanical exfoliation. To explain the observed phenomenon, we construct a minimal model for a single unit cell layer of superconducting 2$H$-${\mathrm{TaS}}_{2}$ with a simplified two-dimensional Fermi surface and a sign-changing Cooper-pair wave function induced by Coulomb repulsion. Superconductivity is induced in the central $\ensuremath{\Gamma}$ pocket, where it becomes nodal. We show that weak scattering at the nodal Fermi surface, produced by nonperturbative coupling between tip and sample, gives Andreev states that lead to a zero-bias peak in the…
Scanning tunneling measurements of layers of superconducting 2H-TaSe 2: Evidence for a zero-bias anomaly in single layers
We report a characterization of surfaces of the dichalcogenide TaSe2 using scanning tunneling microscopy and spectroscopy at 150 mK. When the top layer has the 2H structure and the layer immediately below the 1T structure, we find a singular spatial dependence of the tunneling conductance below 1 K, changing from a zero-bias peak on top of Se atoms to a gap in between Se atoms. The zero-bias peak is additionally modulated by the commensurate 3a0 × 3a0 charge-density wave of 2H-TaSe2. Multilayers of 2H-TaSe2 show a spatially homogeneous superconducting gap with a critical Temperature also of 1 K. We discuss possible origins for the peculiar tunneling conductance in single layers
Electrical control of 2D magnetism in bilayer CrI3
The challenge of controlling magnetism using electric fields raises fundamental questions and addresses technological needs such as low-dissipation magnetic memory. The recently reported two-dimensional (2D) magnets provide a new system for studying this problem owing to their unique magnetic properties. For instance, bilayer chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferroma…
Illustrating the processability of magnetic layered double hydroxides: layer-by-layer assembly of magnetic ultrathin films.
We report the preparation of single-layer layered double hydroxide (LDH) two-dimensional (2D) nanosheets by exfoliation of highly crystalline NiAl-NO3 LDH. Next, these unilamellar moieties have been incorporated layer-by-layer (LbL) into a poly(sodium 4-styrenesulfonate)/LDH nanosheet multilayer ultrathin film (UTF). Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible light (UV-vis), and X-ray diffraction (XRD) profiles have been used to follow the uniform growth of the UTF. The use of a magnetic LDH as the cationic component of the multilayered architecture enables study of the resulting magnetic properties of the UTFs. Our magnetic data show the appearance of spontaneous …
Enhanced superconductivity upon weakening of charge density wave transport in 2H-TaS2 in the two-dimensional limit
Layered transition-metal dichalcogenides that host coexisting charge-density wave (CDW) and superconducting orders provide ideal systems for exploring the effects of dimensionality on correlated electronic phases. Dimensionality has a profound effect on both superconductivity and CDW instabilities. Here we report a substantial enhancement of the superconducting ${T}_{c}$ to 3.4 K for $2H\text{\ensuremath{-}}{\mathrm{TaS}}_{2}$ in the monolayer limit, compared to 0.8 K in the bulk. In addition, the transport signature of a CDW phase transition vanishes in the two-dimensional limit. In our analysis of electronic and vibrational properties of this material, we show that a reduction of the CDW …
Hybrid magnetic superconductors formed by TaS2 layers and spin crossover complexes.
The restacking of charged TaS2 nanosheets with molecular counterparts has so far allowed for the combination of superconductivity with a manifold of other molecule-intrinsic properties. Yet, a hybrid compound that blends superconductivity with spin crossover switching has still not been reported. Here we continue to exploit the solid-state/molecule-based hybrid approach for the synthesis of a layered TaS2-based material that hosts Fe(2+) complexes with a spin switching behavior. The chemical design and synthetic aspects of the exfoliation/restacking approach are discussed, highlighting how the material can be conveniently obtained in the form of highly oriented easy-to-handle flakes. Finall…
Hybrid magnetic/superconducting materials obtained by insertion of a single-molecule magnet into TaS2 layers
et al.
Intercalation of two-dimensional oxalate-bridged molecule-based magnets into layered double hydroxide hosts
Here we report the intercalation of a MnII–CrIII oxalate-bridged extended network into the interlamellar space offered by a ZnII–AlIII LDH host. This material exhibits ferrimagnetic ordering below 3 K from dominant antiferromagnetic interactions between metallic centres through the oxalate linker. Our result opens the door for the design of a completely new sort of hybrid magnetic multilayers from molecule-based magnets and layered inorganic flexible hosts, where the intrinsic properties of both sub-layers can be combined.
Coexistence of structural and magnetic phases in van der Waals magnet CrI3
CrI3 has raised as an important system to the emergent field of two-dimensional van der Waals magnetic materials. However, it is still unclear why CrI3 which has a ferromagnetic rhombohedral structure in bulk, changed to anti-ferromagnetic monoclinic at thin layers. Here we show that this behaviour is due to the coexistence of both monoclinic and rhombohedral crystal phases followed by three magnetic transitions at TC1 = 61 K, TC2 = 50 K and TC3 = 25 K. Each transition corresponds to a certain fraction of the magnetically ordered volume as well as monoclinic and rhombohedral proportion. The different phases are continuously accessed as a function of the temperature over a broad range of mag…
Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling
Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI₃ as a function of temperature and applied magnetic field.We electrically detect the magnetic ground state and interlayer coupling and observe a fieldinducedmetamagnetic transition.The metamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI₃ bar…
Structural and magnetic characterization of the tridimensional network [Fe(HCO2)3]n·nHCO2H
In this work we report the structural and magnetic characterization of a new three-dimensional porous metal–organic framework (MOF) based on iron(III) and the formate anion, [Fe(HCO2)3]n·nHCO2H (1), which was obtained by solvothermal synthesis. The tridimensional structure crystallizes in the trigonal space group Rc and is formed by highly regular octahedral Fe(OHCO)6 units. These units contain six equal Fe–O distances, with angles slightly different from 90° or 180°. The packing of 1 corresponds to a 3D covalent network defined by face sharing between the parallelepipeds, which are formed by the interactions of Fe(OHCO)6 units through formate ligands, thus generating a 41263 topology. This…
Monolayer-to-mesoscale modulation of the optical properties in 2D CrI3 mapped by hyperspectral microscopy
Magnetic 2D materials hold promise to change the miniaturization paradigm of unidirectional photonic components. However, the integration of these materials in devices hinges on the accurate determination of the optical properties down to the monolayer limit, which is still missing. By using hyperspectral wide-field imaging at room temperature, we reveal a nonmonotonic thickness dependence of the complex optical dielectric function in the archetypal magnetic 2D material CrI3 extending across different length scales: onsetting at the mesoscale, peaking at the nanoscale, and decreasing again down to the single layer. These results portray a modification of the electronic properties of the mat…
Quantum Rescaling, Domain Metastability, and Hybrid Domain‐Walls in 2D CrI3 Magnets
Higher-order exchange interactions and quantum effects are widely known to play an important role in describing the properties of low-dimensional magnetic compounds. Here, the recently discovered 2D van der Waals (vdW) CrI3 is identified as a quantum non-Heisenberg material with properties far beyond an Ising magnet as initially assumed. It is found that biquadratic exchange interactions are essential to quantitatively describe the magnetism of CrI3 but quantum rescaling corrections are required to reproduce its thermal properties. The quantum nature of the heat bath represented by discrete electron-spin and phonon-spin scattering processes induces the formation of spin fluctuations in the …
Chiral charge order in the superconductor 2H-TaS(2)
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM
CCDC 915782: Experimental Crystal Structure Determination
Related Article: Verónica Paredes-García, Ignacio Rojas, Rosa Madrid, Andres Vega, Efrén Navarro-Moratalla, Walter Cañón-Mancisidor, Evgenia Spodine, Diego Venegas-Yazigi|2013|New J.Chem.|37|2120|doi:10.1039/C3NJ00023K