0000000000006189
AUTHOR
N. Kodiah Beyeh
Recognition of N-Alkyl- and N-Aryl-Acetamides by N-Alkyl Ammonium Resorcinarene Chlorides
N-alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra- and intermolecular hydrogen bonds that leads to cavitand-like structures. Depending on the upper-rim substituents, self-inclusion was observed in solution and in the solid state. The self-inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self-included dimers spontaneously reorganize to 1:1 host-guest complexes. These host compounds show an interesting ability to bind a series of N-alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C=O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl(-)) and ammoni…
N-Alkyl Ammonium Resorcinarene Salts as High-Affinity Tetravalent Chloride Receptors.
N-Alkyl ammonium resorcinarene salts (NARYs, Y=triflate, picrate, nitrate, trifluoroacetates and NARBr) as tetravalent receptors, are shown to have a strong affinity for chlorides. The high affinity for chlorides was confirmed from a multitude of exchange experiments in solution (NMR and UV/Vis), gas phase (mass spectrometry), and solid-state (X-ray crystallography). A new tetra-iodide resorcinarene salt (NARI) was isolated and fully characterized from exchange experiments in the solid-state. Competition experiments with a known monovalent bis-urea receptor (5) with strong affinity for chloride, reveals these receptors to have a much higher affinity for the first two chlorides, a similar af…
N-Alkyl ammonium resorcinarene salts: multivalent halogen-bonded deep-cavity cavitands
N-Cyclohexyl ammonium resorcinarene halides, stabilized by an intricate array of hydrogen bonds in a cavitand-like assembly, form multivalent halogen-bonded deep-cavity cavitands with perfluoroiodobenzenes. As observed from the macromolar to infinite concentration range through crystal growth and single crystal X-ray analyses, four 1,4-diiodotetrafluorobenzenes form moderate halogen bonds with the bromides of the N-cyclohexyl ammonium resorcinarene bromides leading to a deep-cavity cavitand-like structure. In this assembly, the N-cyclohexyl ammonium resorcinarene bromide also acts as a guest and sits in the upper cavity of the assembly interacting with the 1,4-diiodotetrafluorobenzene throu…
The inherent structural instability: concentration-dependent transformation of pyrogallarene to pyrogallarene lactones.
Pyrogallarene shows concentration-dependent instability in dilute solutions resulting in elimination of two ketene molecules and formation of pyrogallarene lactones. This unexpected phenomenon, which is not observed with resorcinarenes, highlights the significance of the four hydroxyl groups at 2-position for the molecular characteristics of pyrogallarenes.
Halogen Bonded Analogues of Deep Cavity Cavitands
The first examples of halogen bonded analogues of deep cavity cavitands with guest binding properties, formed between N-alkyl ammonium resorcinarene halides as acceptors and bromotrichloromethane as the donor, are reported in the solid state and in solution.
Gas-phase H/D-exchange reactions on resorcinarene and pyrogallarene capsules: Proton transport through a one-dimensional Grotthuss mechanism
Hydrogen/deuterium exchange (HDX) experiments can be used to examine the gas-phase structure of hydrogen-bonded dimeric resorcinarene and pyrogallarene capsules. Already the qualitative comparison of the isotope exchange rates of different host–guest complexes with Cs+, tetramethyl ammonium (TMA+) and tetraethyl ammonium (TEA+) as the guest cations provides insight into the H/D-exchange mechanisms and with it, into the capsules' gas-phase ion structures. The smaller Cs+cations bind inside dimeric capsules with an intact seam of hydrogen bonds between the two monomers. Larger cations such as TEA+ lead to capsules with partially disrupted seams of hydrogen bonds. A fast isotope exchange is on…
Ion-Pair Recognition of Tetramethylammonium Salts by Halogenated Resorcinarenes
The non-covalent interactions of different upper-rim-substituted C(2)-resorcinarenes with tetramethylammonium salts were analyzed in the gas phase in an Electrospray Ionization Fourier-transform ion-cyclotron-resonance (ESI-FTICR) mass spectrometer and by (1)H NMR titrations. The order of binding strengths of the hosts towards the tetramethylammonium cation in the gas phase reflects the electronic nature of the substituents on the upper rim of the resorcinarene. In solution, however, a different trend with particularly high binding constants for halogenated resorcinarenes has been observed. This trend can be explained by a synergetic effect originating from the interaction of the halogenate…
Dimeric resorcinarene salt capsules with very tight encapsulation of anions and guest molecules
Crystallization of N-cyclohexyl ammonium resorcinarene triflate from methanol results in a dimeric capsule capable of trapping two triflate anions and two methanol molecules within a 341 A3 cavity while with 1,4-dioxane as a guest it forms a new larger dimeric capsule with volume of 679 A3 encapsulating four 1,4-dioxane and four water molecules, resulting in packing coefficients of 0.75 and 0.67, respectively.
Hydrogen bond-stabilised N-alkylammonium resorcinarene halide cavitands
A family of hydrogen bond-stabilised N-alkylammonium resorcinarene chloride and bromide cavitands were synthesised and characterised with 1H NMR and ESI mass spectrometry. The seven compounds exhibit interestingly either self-inclusion or guest complexation in the solid state evidenced by single crystal X-ray diffraction. The four dimers show self-inclusion of the upper rim propyl chains and consist of two hydrogen-bonded resorcinarene tetracations and six halide anions, while the remaining two halide anions are located in between the dimers linking them via hydrogen bonding. Small solvent molecules such as dichloromethane, methanol, n-butanol or chloroform are complexed into the resorcinar…
Cooperative Binding of Divalent Diamides by N-Alkyl Ammonium Resorcinarene Chlorides
N-Alkyl ammonium resorcinarene chlorides, stabilized by an intricate array of hydrogen bonds leading to a cavitand-like structure, bind amides. The molecular recognition occurs through intermolecular hydrogen bonds between the carbonyl oxygen and the amide hydrogen of the guests and the cation-anion circular hydrogen-bonded seam of the hosts, as well as through CH⋅⋅⋅π interactions. The N-alkyl ammonium resorcinarene chlorides cooperatively bind a series of di-acetamides of varying spacer lengths ranging from three to seven carbons. Titration data fit either a 1:1 or 2:1 binding isotherm depending on the spacer lengths. Considering all the guests possess similar binding motifs, the first bin…
Complexation of enantiomerically pure tetraalkylammonium cations by ethyl resorcinarene
Molecular recognition via weak interactions of three enantiopure tetraalkylammonium cations 2–4 by ethyl resorcinarene 1 was studied in the solid state using single-crystal X-ray diffraction, in solution by proton nuclear magnetic resonance spectroscopy (1H NMR) titration and in the gas phase using electrospray ionisation mass spectrometry. The 1H NMR titration studies reveal the association constants for the 1:1 complexes to vary according to the size and electronic properties of the alkyl groups of the guest cations. In the solid state, the resorcinarene is deprotonated and the X-ray structure confirms the 1:1 complex 2+@1− to be held together by multiple cation…π and C–H…π interactions.…
Hierarchical Ordering in Ternary Co-Crystals of C60, N-Benzyl Ammonium Resorcinarene Bromide and Solvent Molecules
Co-crystallization of C60 together with an N-benzyl ammonium resorcinarene bromide from toluene:1,2-dichloroethane mixture results in ternary co-crystals where the modulated C60 lattice entraps dimeric resorcinarene assemblies, which, in turn, have 149 and 280 A3 cavities filled with 1,2-dichloroethane molecules.
Dimeric Resorcin[4jarene Capsules in the Solid State
Supramolecular chemistry research is focused on the study of weak non-covalent intermolecular — that is, supramolecular — interactions as the driving force in self-assembly and molecular recognition. Dimeric resorcin[4]arenes capsules have been a focus of our research for the last 15 years. This review describes the solid state complexation studies of unsubstituted phenolic resorcin[4]arenes and pyrogall[4]arenes towards the formation of dimeric capsules and assemblies using ionic and neutral species as guest molecules and templates. The multitude of different crystal structures obtained during these studies demonstrates the versatile nature of resorcin[4]arenes and pyrogall[4]arenes (2-hyd…
Size‐Selective Encapsulation of Hydrophobic Guests by Self‐Assembled M 4 L 6 Cobalt and Nickel Cages
Subtle differences in metal-ligand bond lengths between a series of [M(4)L(6)](4-) tetrahedral cages, where M = Fe(II), Co(II), or Ni(II), were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single-crystal X-ray diffraction was used to study the solid-state complexes of the iron(II) and nickel(II) cages.
The Synergetic Interplay of Weak Interactions in the Ion-Pair Recognition of Quaternary and Diquaternary Ammonium Salts by Halogenated Resorcinarenes
The influence of halogens on the noncovalent interactions of different upper-rim-substituted hexylresorcinarenes with quaternary and diquaternary ammonium iodide salts was investigated in the gas phase by electrospray ionization Fourier-transform ion-cyclotron-resonance (ESI-FTICR) mass spectrometry and in solution by 1H NMR titration studies. The electronic nature of the substituents on the upper rim of the resorcinarene was directly reflected in the order of binding strengths of the hosts towards quaternary and diquaternary ammonium cations in the gas phase. In solution, the opposite trend was observed, with generally higher binding constants for the diquaternary over the quaternary salts…
Deprotonation of resorcinarenes by mono- and diamine bases: complexation and intermolecular interactions in the solid state
The deprotonation of resorcinarenes by mono- and dibasic amines, viz. triethylamine (TEA) and its dibasic analogue, N,N′-dimethylpiperazine (DMPip), was studied and the resulting supramolecular complexes were analysed in the solid state, in solution and in the gas phase. In the solid state, 1:1 (2TEAH+·(ethyl-resorcinarene)2−·MeOH), 3:2 [DMPip·2DMPipH+·2(ethyl-resorcinarene−)] and 3:2 [2DMPip·DMPipH22+@(2methyl-ethyl-resorcinarene−)2·2MeOH] solid state complexes and interesting resorcinarene−⋯resorcinarene− supramolecular networks formed via enhanced hydrogen bonds involving the hydroxyl groups and the deprotonated hydroxyl groups of the resorcinarenes were observed. The host–guest complexe…
Binding Modes of Nonspherical Anions to N-Alkylammonium Resorcinarenes in the Solid State
A series of hydrogen bond stabilized N-alkylammonium resorcinarene salts with nitrate, triflate, and picrate as the counteranions were synthesized and characterized with 1H NMR and electrospray ionization (ESI) mass spectrometry. Together with electrostatic interactions, the binding of the anions with several hydrogen bond donor sites proceeds through a complex array of intra- and intermolecular hydrogen bonds, evidenced by single crystal X-ray diffraction analysis. These N-alkyl ammonium resorcinarenes bind the larger nonspherical anions into deformed cavitand-like structures and enforce a transformation of the resorcinarene conformation from almost symmetrical to extremely distorted.
ChemInform Abstract: Dimeric Resorcin[4]arene Capsules in the Solid State
Supramolecular chemistry research is focused on the study of weak non-covalent intermolecular — that is, supramolecular — interactions as the driving force in self-assembly and molecular recognition. Dimeric resorcin[4]arenes capsules have been a focus of our research for the last 15 years. This review describes the solid state complexation studies of unsubstituted phenolic resorcin[4]arenes and pyrogall[4]arenes towards the formation of dimeric capsules and assemblies using ionic and neutral species as guest molecules and templates. The multitude of different crystal structures obtained during these studies demonstrates the versatile nature of resorcin[4]arenes and pyrogall[4]arenes (2-hyd…
Tetranitroresorcin[4]arene: synthesis and structure of a new stereoisomer
The direct reaction between 2-nitroresorcinol and acetaldehyde in alkaline medium yields tetranitro-C1-resorcin[4]arene in a moderate 8.2% overall yield which was characterized by single crystal X-ray crystallography, 1H NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). In solution and in the solid state, the product adopts a unique, thermally stable and unprecedented rcct-boat conformation.
Tri- and tetraurea piperazine cyclophanes: synthesis and complexation studies of preorganized and folded receptor molecules.
A series of symmetrical tri- and tetrameric N-ethyl- and N-phenylurea-functionalized cyclophanes have been prepared in nearly quantitative yields (86-99 %) from the corresponding tri- and tetraamino-functionalized piperazine cyclophanes and ethyl or phenyl isocyanates. Their conformational and complexation properties have been studied by single-crystal X-ray diffraction, variable-temperature NMR spectroscopy, and ESI-MS analysis. The rigid 27-membered trimeric cyclophane skeleton assisted by a seam of intramolecular hydrogen bonds results in a preorganized ditopic recognition site with an all-syn conformation of the urea moieties that, complemented by a lipophilic cavity of the cyclophane, …
CCDC 990706: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Altti Ala-Korpi, Mario Cetina, Arto Valkonen, Kari Rissanen|2014|Chem.-Eur.J.|20|15144|doi:10.1002/chem.201402533
CCDC 967821: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Mario Cetina, Kari Rissanen|2014|Chem.Commun.|50|1959|doi:10.1039/C3CC49010F
CCDC 990709: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Altti Ala-Korpi, Mario Cetina, Arto Valkonen, Kari Rissanen|2014|Chem.-Eur.J.|20|15144|doi:10.1002/chem.201402533
CCDC 969817: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Arto Valkonen, Kari Rissanen|2014|CrystEngComm|16|3758|doi:10.1039/C3CE42291G
CCDC 1401637: Experimental Crystal Structure Determination
Related Article: Fangfang Pan, N. Kodiah Beyeh, Kari Rissanen|2015|RSC Advances|5|57912|doi:10.1039/C5RA11905G
CCDC 1429823: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Fangfang Pan, Sandip Bhowmik, Toni Mäkelä, Robin H. A. Ras, Kari Rissanen|2016|Chem.-Eur.J.|22|1355|doi:10.1002/chem.201504514
CCDC 1429824: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Fangfang Pan, Sandip Bhowmik, Toni Mäkelä, Robin H. A. Ras, Kari Rissanen|2016|Chem.-Eur.J.|22|1355|doi:10.1002/chem.201504514
CCDC 1429822: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Fangfang Pan, Sandip Bhowmik, Toni Mäkelä, Robin H. A. Ras, Kari Rissanen|2016|Chem.-Eur.J.|22|1355|doi:10.1002/chem.201504514
CCDC 829593: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Mario Cetina,Kari Rissanen|2012|Cryst.Growth Des.|12|4919|doi:10.1021/cg3008409
CCDC 967819: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Mario Cetina, Kari Rissanen|2014|Chem.Commun.|50|1959|doi:10.1039/C3CC49010F
CCDC 990707: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Altti Ala-Korpi, Mario Cetina, Arto Valkonen, Kari Rissanen|2014|Chem.-Eur.J.|20|15144|doi:10.1002/chem.201402533
CCDC 1038851: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Arto Valkonen, Sandip Bhowmik, Fangfang Pan, K. Rissanen|2015|Org.Chem.Front.|2|340|doi:10.1039/C4QO00326H
CCDC 1006950: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Fangfang Pan, and Kari Rissanen|2014|Cryst.Growth Des.|14|6161|doi:10.1021/cg5014413
CCDC 969818: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Arto Valkonen, Kari Rissanen|2014|CrystEngComm|16|3758|doi:10.1039/C3CE42291G
CCDC 990708: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Altti Ala-Korpi, Mario Cetina, Arto Valkonen, Kari Rissanen|2014|Chem.-Eur.J.|20|15144|doi:10.1002/chem.201402533
CCDC 990705: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Altti Ala-Korpi, Mario Cetina, Arto Valkonen, Kari Rissanen|2014|Chem.-Eur.J.|20|15144|doi:10.1002/chem.201402533
CCDC 1039550: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Altti Ala-Korpi, Fangfang Pan, Hyun Hwa Jo, Eric V. Anslyn, Kari Rissanen|2015|Chem.-Eur.J.|21|9556|doi:10.1002/chem.201406504
CCDC 969816: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Arto Valkonen, Kari Rissanen|2014|CrystEngComm|16|3758|doi:10.1039/C3CE42291G
CCDC 1038850: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Arto Valkonen, Sandip Bhowmik, Fangfang Pan, K. Rissanen|2015|Org.Chem.Front.|2|340|doi:10.1039/C4QO00326H
CCDC 829595: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Mario Cetina,Kari Rissanen|2012|Cryst.Growth Des.|12|4919|doi:10.1021/cg3008409
CCDC 1401638: Experimental Crystal Structure Determination
Related Article: Fangfang Pan, N. Kodiah Beyeh, Kari Rissanen|2015|RSC Advances|5|57912|doi:10.1039/C5RA11905G
CCDC 967820: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Mario Cetina, Kari Rissanen|2014|Chem.Commun.|50|1959|doi:10.1039/C3CC49010F
CCDC 829594: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Mario Cetina,Kari Rissanen|2012|Cryst.Growth Des.|12|4919|doi:10.1021/cg3008409
CCDC 829592: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Mario Cetina,Kari Rissanen|2012|Cryst.Growth Des.|12|4919|doi:10.1021/cg3008409
CCDC 1429821: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Fangfang Pan, Sandip Bhowmik, Toni Mäkelä, Robin H. A. Ras, Kari Rissanen|2016|Chem.-Eur.J.|22|1355|doi:10.1002/chem.201504514
CCDC 967822: Experimental Crystal Structure Determination
Related Article: N. Kodiah Beyeh, Mario Cetina, Kari Rissanen|2014|Chem.Commun.|50|1959|doi:10.1039/C3CC49010F