0000000000013039

AUTHOR

M.c. Martínez-tomás

Recombination processes in unintentionally doped GaTe single crystals

Emission spectra of GaTe single crystals in the range of 1.90–1.38 eV have been analyzed at different temperatures and excitation intensities by photoluminescence, photoluminescence excitation, and selective photoluminescence. A decrease in band gap energy with an increase in temperature was obtained from the redshift of the free exciton recombination peak. The energy of longitudinal optical phonons was found to be 14±1 meV. A value of 1.796±0.001 eV for the band gap at 10 K was determined, and the bound exciton energy was found to be 18±0.3 meV. The activation energy of the thermal quenching of the main recombination peaks and of the ones relating to the ionization energy of impurities and…

research product

Crystal growth of ZnO micro and nanostructures by PVT on c-sapphire and amorphous quartz substrates

Abstract ZnO micro and nanostructures in the form of tripods, grains, arrows and wires have been grown at temperatures as low as 500–300  ∘ C by a vapour transport method without catalysis and using a well selected value of the carrier gas flow. A transition state between grains and nanowires is reported being characterized by arrow-like structures which are constituted by a pyramidal head and a tail that is growing from the basal plane of the head. In order to understand the effect of growth conditions on the morphology of micro and nanostructures, an analysis of temperature and species concentration conditions has been carried out. In addition two different kinds of substrates have been u…

research product

VIS-UV ZnCdO/ZnO multiple quantum well nanowires and the quantification of Cd diffusion.

International audience; We report on the growth and microstructure analysis of high Cd content ZnCdO/ZnO multiple quantum wells (MQW) within a nanowire. Heterostructures consisting of ten wells with widths from 0.7 to 10nm are demonstrated, and show photoluminescence emissions ranging from 3.03 to 1.97eV. The wells with thicknesses⩽2nm have high radiative efficiencies compared to the thickest ones, consistent with the presence of quantum confinement. However, a nanometric analysis of the Cd profile along the heterostructures shows the presence of Cd diffusion from the ZnCdO well to the ZnO barrier. This phenomenon modifies the band structure and the optical properties of the heterostructure, an…

research product

Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition

We have investigated the cathodoluminescence (CL) emission and the Raman spectra along individual ZnO nanorods grown by a catalyst-free method. The spatial correlation between the CL emission and the defect related Raman modes permits establishing a correspondence between the non-radiative recombination centres (NRRCs) and the defects responsible for the 275 cm−1 Raman band. According to this relation, the NRRCs in these nanorods are tentatively associated with complexes of zinc interstitials.

research product

Study of the ZnO crystal growth by vapour transport methods

Abstract The crystal growth of ZnO by vapour transport is classically made with the assistance of additional species that produce a gaseous mixture, the role of which remains often uncertain in the transport and growth process. Initially, in order to study the mass transport process, a numerical simulation is made to analyse which are the requirements to have an effective transport. As the pressure of each gaseous species is generally unknown, the numerical study has been performed for different total pressures. It is found that, if congruent and equilibrium conditions are assumed at the sublimation and crystallisation interfaces, effective growth conditions can only be attained for a narro…

research product

High resolution X-ray diffraction, X-ray multiple diffraction and cathodoluminescence as combined tools for the characterization of substrates for epitaxy: the ZnO case

The goal of this work is to show the capability of X-ray multiple diffraction (XRMD) to be used in combination with high resolution X-ray diffraction (HRXRD) and cathodoluminescence (CL) as an easy and simple methodology to determine structural and surface defect-related characteristics of samples that could be used as substrates for epitaxial growth. For this study ZnO {0001}-oriented samples have been used in view of their use as substrates for homoepitaxy. The miscut and bending of the samples have been analyzed by measuring the position of the X-ray diffraction peaks. The presence of multiple crystallographic domains and their characteristics have been studied by HRXRD (from the allowed…

research product

Non radiative recombination centers in ZnO nanorods

ABSTRACTNowadays, the nature of the non radiative recombination centres in ZnO is a matter of controversy; they have been related to extended defects, zinc vacancy complexes, and surface defects, among other possible candidates. We present herein the optical characterization of catalyst free ZnO nanorods grown by atmospheric MOCVD by microRaman and cathodoluminescence spectroscopies. The correlation between the defect related Raman modes and the cathodoluminescence emission along the nanorods permits to establish a relation between the non radiative recombination centers and the defects responsible for the local Raman modes, which have been related to Zn interstitial complexes.

research product

Synthesis and characterization of ZnO nano and micro structures grown by low temperature spray pyrolysis and vapor transport.

In this work we present a systematic study of ZnO micro and nanostructures grown by spray pyrolysis (SP) and by physical vapour transport (PVT) on glass and c-sapphire substrates at low temperatures. Optimised growth conditions have allowed to obtain homogeneous ZnO nanolayers composed of quasi-spherical nanoparticles in the range 2 to 8 nm by spray pyrolysis, while by PVT the selected growth conditions allow to produce a wide variety of morphologies (tripods, grains, arrows and wires) of nano and microsize dimension. Grazing incidence X-ray diffraction, field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), selected area electron dif…

research product

A numerical study of thermal conditions in the THM growth of HgTe

A numerical simulation of the travelling heater method (THM) process in the growth of HgTe is carried out. The whole system (furnace, ampoule and charge) is taken into account in the frame of a quasi-steady-state model. The mass conservation condition for the solute in the liquid zone permits the determination of the rate of advance of the crystallisation isotherm as a function of the heater position. We claim to study the evolution of different magnitudes along the growth process, searching for the physical reasons which could be at the origin of defects in the form of thin layers observed in some growing experiences. To solve the governing equations of fluid flow, heat transfer and mass t…

research product

Assessment of the out-plane and in-plane ordering of high quality ZnO nanorods by X-ray multiple diffraction

Abstract ZnO nanorods grown on buffered and non buffered sapphire substrates have been investigated by X-ray multiple diffraction using Renninger scans of the ZnO(0001) and ZnO(0003) forbidden reflections. In this technique the diffracted X-ray beam is simultaneously diffracted by several sets of planes, providing information on the broadening in different directions, as well as from nanorods, and from the layer on which they grow. The intensities and angular widths of peaks obtained by azimuthal and omega scans have been analyzed, making a direct comparison with conventional measurements of the full width at half-maximum of symmetric and asymmetric reflections. The analysis leads to establ…

research product

Spray pyrolytic deposition of ZnO thin layers composed of low dimensional nanostructures

Abstract ZnO nanolayers composed of fine nanostructures have been successively grown by spray pyrolytic deposition at 300  ∘ C over amorphous glass substrates. As deposited samples were analysed by scanning electron microscopy (SEM), showing a granular morphology with grain size in the limit of the microscope resolution. CL measurement shows a broad near band edge (3.4 eV) emission of ZnO in the UV region and the defect level emissions in the green region of the spectrum. The use of intermittent spray pyrolytic deposition is shown as an alternative to increase the homogeneity of the samples when temperatures near to the precursor pyrolytic decomposition is selected, long depositions times a…

research product

ZnO films grown by MOCVD on GaAs substrates: Effects of a Zn buffer deposition on interface, structural and morphological properties

Abstract Integration of ZnO with the well-developed GaAs technology presents several aspects that need to be previously analyzed and considered. The large lattice mismatch between ZnO and GaAs and its different crystallographic structure lead to many structural defects. In addition, their potential chemical reactivity is another source of complexity and an academic challenge. Recently some interesting contributions on this subject have been carried out by Liu and co-workers. As an additional step to the knowledge of the ZnO/GaAs heterostructure, we have deepened on the study of the morphology and orientation of ZnO thin films grown by atmospheric pressure metal-organic chemical vapour depos…

research product