0000000000027157
AUTHOR
Roberto Triolo
Small angle scattering study of poly(methylmethacrylate)-block-poly(ethylene oxide) block co-polymer in aqueous solution
A combined Small Angle X ray (SAXS) and Neutron (SANS) Scattering study of aqueous solutions of a symmetric block copolymer consisting of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) moieties is presented. The polymer forms slightly polydisperse spherical micelles in a wide range of concentration (0.03 – 6.7 w/V) and temperature (20°C ≤ T ≤ 65°C). A good description of the SANS data is obtained using a polydisperse core-shell model with a structure factor for a modified hard sphere potential. By increasing the concentration at constant T we observed a decrease of the aggregation number and an increase of solvation of PEO groups in the shell, opposite to what happens by in…
Localization of n-alcohols and structural effects in aqueous solutions of sodium dodecyl sulfate
Small-angle neutron Mattering measurements OD sodium dodecyl sulfate aqueous solutions have been performed in the presence of n-alcohols, from methanol to octanol, at different alcohol concentrations. By modeling the experimental intensities, it was possible to obtain structural information and to derive simultaneously the distribution of the alcohols between the aqueous and the micellar phases. It was found that short chain alcohols tend to remain in the aqueous phase and, by altering the solvent properties, induce a decrease in the aggregation number of sodium dodecyl sulfate micelles. On the other hand, alcohols with longer hydrocarbon chains were found to be present in both phases thoug…
CO2–water supercritical mixtures: Test of a potential model against neutron diffraction data
Small angle scattering study of poly(methylmethacrylate)-blockpoly(ethylene oxide) block co-polymer in aqueous solution
A combined Small Angle X ray (SAXS) and Neutron (SANS) Scattering study of aqueous solutions of a symmetric block copolymer consisting of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) moieties is presented. The polymer forms slightly polydisperse spherical micelles in a wide range of concentration (0.03 – 6.7 w/V) and temperature (20°C ≤ T ≤ 65°C). A good description of the SANS data is obtained using a polydisperse core-shell model with a structure factor for a modified hard sphere potential. By increasing the concentration at constant T we observed a decrease of the aggregation number and an increase of solvation of PEO groups in the shell, opposite to what happens by in…
Aggregation Phenomena in Supercritical Dioxide
Recent developments in ultra–small angle neutron scattering techniques
Abstract There is growing interest in the (nano−) scale structural analysis of condensed matter to study synthetic and biological polymers, colloids, porous materials, etc. Over the past two decades, small–angle neutron scattering (SANS), based on the availability of high fluxes of cold neutrons (wavelengths 4−20 A), has proven to be one of the most important tools for such investigations. This success is due to a fortuitous combination of several factors of cold neutrons: high bulk penetrating power, the ability to manipulate local scattering amplitudes via isotopic labeling or an appropriate choice of solvent (contrast variation), minimal radiation damage, and small absorption for most el…
Analysis of small-angle scattering patterns from a commercial Al-Li alloy by means of a model incorporating a repulsive step potential
Abstract Small-angle X-ray scattering measurements are reported for a commercial Al-8·49%Li-51% Cu (atomic composition) alloy solution treated at 520°C and thermally aged for several times at several temperatures. Data have been analysed by means of a model of ellipsoidal precipitate particles previously proposed by some of us and by a modification of this model where, in the interparticle interference term, allowance is made for interactions between the precipitate particles at longer range than previously. This was achieved by the introduction, in addition to the hard-sphere interaction potential, of a potential step. Our fits indicate that the precipitate particles interact through a rep…
Alkali-Metal Azides Interacting with Metal–Organic Frameworks
Time-resolving Analysis of Cryotropic Gelation of Water/Poly(Vinyl Alcohol) Solutions via Small Angle Neutron Scattering
The structural transformations occurring in initially homogeneous aqueous solutions of poly(vinyl alcohol) (PVA) through application of freezing (-13 degrees C) and thawing (20 degrees C) cycles is investigated by time resolving small-angle neutron scattering (SANS). These measurements indicate that formation of gels of complex hierarchical structure arises from occurrence of different elementary processes, involving different length and time scales. The fastest process that could be detected by our measurements during the first cryotropic treatment consists of the crystallization of the solvent. However, solvent crystallization is incomplete, and an unfrozen liquid microphase more concentr…
Mesoscopic structure of marble determined by combined USANS and SANS
Marbles, carbonatic (i.e. calcitic–dolomitic) rocks deriving from the metamorphic evolution of previous carbonates, are often rather similar to each other in many respects (i.e. mineralogical, physical–structural and chemical), and thus difficult to identify. In search for a diagnostic method to provenance marbles, we have selected a limited number of Italian white marbles representing a wide array of metamorphic (i.e. thermal) levels. The mesoscale structural arrangement of these samples was derived by means of combined Ultra Small Angle and Small Angle Neutron Scattering experiments. The parameters of the model used to fit the data have been correlated with the metamorphic history of the …
Structural investigation of hybrid nanocomposites
Ultra small (USANS) and small angle neutron scattering (SANS) techniques were employed to study an elastomer styrene–butadiene, where two kinds of silica fillers have been added in different amounts. Small silica-particle fillers are expected to modify morphological and mechanical properties when dispersed in the copolymer matrix. The USANS and SANS techniques can span a wide range of momentum transfer, investigating morphological properties of the filled elastomer over a number of decades in length scale. Surface and mass fractal behavior has been observed over different length scales.
Scattering studies of large scale structures at the ultra small angle neutron scattering instrument S18
Abstract In recent years ultra small angle neutron scattering (USANS) has developed into a powerful standard method for large scale structure investigations. The upgraded instrument S18 at the ILL's 58 MW high flux reactor is operated routinely with increasing beam time demand. The performance of the instrument and its abilities will be discussed in this paper. A peak to background ratio better than 10 5 is reached using Agamalian's tail reduction method. A q -range from 2.10 −5 up to 5.10 −2 A −1 can be covered. This allows a clear overlap with standard pinhole SANS instruments. The new way collecting scattering data logarithmically equidistant in q -space saves measuring time. This allows…
Fingerprinting white marbles of archaeometric interest by means of combined SANS and USANS
We have performed a series of USANS and SANS measurements on a selected group of marble samples characterized by similar chemical composition but wide range of known metamorphic conditions. With these samples we start the building up of a data base in an attempt to correlate metamorphism and mesoscopic structure of white marbles. Experimental data have been analysed in terms of a hierarchical model. The present data highlight the importance of the structure at meso scale in identifying the provenance of the marble samples. A remarkable simple relation between the model parameters and the metamorphic degree has been found. This curve might represent a master curve to allow fingerprinting of …
SAXS investigation on aggregation phenomena in supercritical CO2.
Synchrotron Small-Angle X-Ray scattering (SAXS) measurements on aggregate formation of a Polyvinyl acetate- b-Perfluoro octyl acrylate (PVAc- b-PFOA) block copolymer in supercritical CO(2) are here reported. Experiments were carried out for a series of different thermodynamic conditions, changing the solvent density by profiling both the pressure at constant temperature and the temperature at constant pressure. This block copolymer and in general fluorocarbon-hydrocarbon di-blocks form aggregates depending on the value of CO(2) density. A sharp transition between monomers dissolved as random coils and micelles characterized by a solvophilic shell and a solvophobic core occurs when the CO(2)…
Industrial applications of the aggregation of block copolymers in supercritical CO 2 : a SANS study
Industrial applications of supercritical carbon dioxide (scCO2) rely upon the rather selective and easily adjustable solvent ability of CO2. CO2 near the critical point is a poor solvent for high molecular weight (HMW) hydrocarbon polymers, while it is a very good solvent for amorphous fluorinated polymers. By increasing the pressure, CO2 becomes a good solvent even for HMW hydrogenated chains. Specially engineered amphiphilic di-block copolymers, with CO2-philic and CO2-phobic portions, are expected to undergo trough a monomer–aggregate transition when the solvent density of the scCO2 changes. Here small-angle neutron scattering (SANS) results are reported for a block copolymer dissolved i…
Composition and corrosion phases of Etruscan Bronzes from Villanovan Age
A neutron diffraction (ND) and neutron tomography (NT) study of laminated ancient bronzes was performed at the ISIS (Rutherford Appleton Laboratory, UK) neutron source and at the BENSC reactor (Hahn-Meitner Institut, Germany). The samples are part of an 8th century BC Etruscan collection discovered in the necropolises of Osteria-Poggio Mengarelli and Cavalupo in the Vulci area (Viterbo, Italy). The study allowed us to derive-in a totally non-destructive manner-information related to the main composition of the objects, possible presence of alterations and their nature, crusts and inclusions, as well as structure of the bulk. The presence of some components is linked to a variety of question…
Small-Angle Scattering from Phase-Separated Metallic Alloys: From Experiment to Phase Diagrams
In this paper, phase-separated metallic alloys are described in terms of concentration fluctuations. As a consequence, Small Angle Scattering equations which allow to calculate the entire scattering curve by incorporating particle-particle interference effects on the basis of the Percus-Yevick formalism, are obtained. It is shown that, for Aluminium-Lithium alloys, satisfactory fits of the experimental data can be obtained if it is assumed that Li rich elliptical monodisperse precipitate particles approach each other at average distances which are larger than the sum of the hard-sphere particle radii. It is also shown that a possible ambiguity of this model, within the Percus-Yevick formali…
Structure, morphology and crystallization of a random ethylene-propylene copolymer
The structure, morphology, and crystallization behavior of a random ethylene–propylene copolymer, containing 2 wt % ethylene sequences, are analyzed and compared with those of a plain polypropylene sample by means of optical and scanning microscopy, wide-angle X-ray scattering, and calorimetry. For the copolymer, different polymorphs (α, γ and smectic modifications) and morphologies can be obtained through changes in the crystallization and annealing conditions. The analysis of the structural results suggests that the γ phase of isotactic polypropylene can be generated for high molecular mass samples with drastic decreases in the undercooling. The spherulite growth rate (G) data, in conjunc…
Kinetics of block-copolymer aggregation in super critical CO2
Small angle X-ray and neutron scattering (SAXS and SANS) are used to obtain structural information on the aggregation behavior of block-copolymers dissolved in supercritical CO2. The SANS technique is used to provide a detailed structural model for the micellar aggregates, which form below the critical micellization density (CMD), that we defined in our previous work. The SAXS technique (with a synchrotron source) is used to provide the first experimental information concerning the kinetic features of both formation and decomposition of such aggregates as soon as pressure jumps are applied to the solutions across the CMD. 2002 Elsevier Science B.V. All rights reserved.
Synchrotrons and Neutron Sources Teamed up for a Green Future
Pressure-induced formation of diblock copolymer "micelles" in supercritical fluids. A combined study by small angle scattering experiments and mean-field theory. II. Kinetics of the unimer-aggregate transition
We developed a simple time-dependent mean-field theory to describe the phase separation kinetics of either homopolymers or AB-diblock copolymers in supercritical (SC) fluids. The model, previously used to describe the phase behavior of AB-block copolymers under the assumption of strong solvent selectivity for just one copolymer chain, has been extended to study the kinetics of the phase separation process. Time resolved small angle x-ray scattering (TR-SAXS) measurements have been performed on different AB-diblock copolymers containing a perfluorinated chain and dissolved in SC-CO2. The data obtained over a wide range of pressure and temperature confirm our theoretical predictions. Particul…
X-ray scattering studies of the structure of aqueous hydroxy-propylcellulose solutions
X-ray diffraction studies have been undertaken on aqueous solutions of hydroxy propylcellulose (HPC) over a wide range of the scattering vector Q. The experiments revealed only modest differences in local structure on a distance scale ca. 5–300 A despite the fact that they covered concentrations generally interpreted as ranging from the isotropic (35.1 wt %) to the anisotropic liquid crystalline (LC) phase (53.5 wt %). Several models were used to interpret the small-angle scattering data, and each gave similar structural parameters and extrapolated intensities (Q → 0) for both solutions. Peaks were observed with d-spacings ca. 12–17 A in both materials. Wide-angle x-ray scattering (WAXS) sh…
Theoretical investigation of magnetic properties in Cu(II) complexes with bridging azide ions
Design of nonionic surfactants for supercritical carbon dioxide
Interfacially active block copolymer amphiphiles have been synthesized and their self-assembly into micelles in supercritical carbon dioxide (CO 2 ) has been demonstrated with small-angle neutron scattering (SANS). These materials establish the design criteria for molecularly engineered surfactants that can stabilize and disperse otherwise insoluble matter into a CO 2 continuous phase. Polystyrene- b -poly(1,1-dihydroperfluorooctyl acrylate) copolymers self-assembled into polydisperse core-shell-type micelles as a result of the disparate solubility characteristics of the different block segments in CO 2 . These nonionic surfactants for CO 2 were shown by SANS to be capable of emulsifying u…
MOF DERIVATIVES AS MOLECULAR TOOLS TO TRAP METAL AZIDES
Determination of the Composition of Mixed Hydrogenated and Fluorinated Micelles by Small Angle Neutron Scattering
Molecular association of cryptand 221D in NaCl-water solutions. A small-angle neutron scattering study
Molecules of 5-Decyl-4,7,13,16,21-pentaoxa-1,10-diaza-bicyclo-[8.8.5.]tricosan (221D) and its sodium complex, with both a hydrophobic and a hydrophilic portion, are expected to form aggregates in water solutions. This was confirmed by surface tension measurements. The aggregation behaviour was studied by small-angle neutron scattering at two different [NaCl]/[221D] molar ratios, such as to obtain, in one case, aggregates entirely made up of ionic monomers, and in the other, mixed micelles constituted by both ionic and non-ionic units. The variation of the aggregation number and number of aggregates indicated that, in the former case, smaller micelles were formed, as a consequence of repulsi…
QENS investigation of filled rubbers
The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene–ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface.
Structure of isotactic polypropylene–hydrogenated oligo(cyclopentadiene) (iPP–HOCP) blends Part II. HOCP-rich blends
Abstract Blends of isotactic polypropylene (iPP) and hydrogenated oligo(cyclopentadiene) (HOCP) were investigated to gain structural information by means of both SAXS and SANS techniques. The composition range (from 30 to 60% w/w HOCP content) and the temperature range (between 25 and 160°C) were chosen in order to cover the miscibility gap in the phase diagram of the material system. In a previous report, blends lying outside the miscibility gap have been investigated and the corresponding SAXS patterns were interpreted in terms of a pseudo-two phase model. For the SAXS patterns, blends lying inside the miscibility gap are rather hard to be interpreted in terms of such a model. On the othe…
Structure of diblock copolymers in supercritical carbon dioxide and critical micellization pressure
This paper reports a small angle neutron scattering investigation of micelle formation by fluorocarbon-hydrocarbon block copolymers in supercritical ${\mathrm{CO}}_{2}{(\mathrm{s}\mathrm{c}\ensuremath{-}\mathrm{C}\mathrm{O}}_{2})$ at 65 \ifmmode^\circ\else\textdegree\fi{}C. A sharp unimer-micelle transition is obtained due to the tuning of the solvating ability of ${\mathrm{s}\mathrm{c}\ensuremath{-}\mathrm{C}\mathrm{O}}_{2}$ by profiling pressure, so that the block copolymer, in a semidilute solution, finds ${\mathrm{s}\mathrm{c}\ensuremath{-}\mathrm{C}\mathrm{O}}_{2}$ a good solvent at high pressure and a poor solvent at low pressure. At high pressure the copolymer is in a monomeric state…
Structural Organization of Poly(vinyl alcohol) Hydrogels Obtained by Freezing and Thawing Techniques: A SANS Study
The structural organization of matter in poly(vinyl alcohol) (PVA) hydrogels obtained by repeatedly freezing and thawing dilute solutions of PVA in D2O is investigated by use of small-angle neutron scattering measurements (SANS). This study is the first systematic and quantitative investigation in the medium range of length scales on PVA hydrogels obtained by freezing and thawing techniques. The studied gels have a complex hierarchical structure, extending over a wide range of length scales. The structural organization on the micron length scale originates from the presence of two separated phases constituted by polymer-rich and polymer-poor regions. The network structure may be interpreted…
Microscopic structure of H2O–CO2 mixtures in supercritical conditions
Dilute and semi dilute solutions of block copolymers in water, near-critical and super-critical CO2: a small angle scattering study of the monomer–aggregate transition
Abstract Small angle neutron (SANS) and X-ray (SAXS) Scattering measurements on aggregate formation of block copolymers in water and in near-critical and supercritical CO2 are reported here. Time Resolved SAXS (TR-SAXS) has also been performed in the supercritical region. Experiments have been carried out for a series of different thermodynamic conditions, changing the solvent density by profiling the pressure at constant temperature. A sharp transition between monomers dissolved as random coils and micelles characterized by a solvo-philic shell and a solvo-phobic core occurs when the solvent density reaches the critical micellization value. This is easily shown in the case of scCO2.
Neutron tomography for archaeological investigations
Within the last decade neutron tomography and radiography significantly gained importance. Especially its application in non-destructive testing for industrial components can be underlined. A good example is the automotive and aviation industry, where a high contrast for the used lubricants and adhesive materials is required. In contrast to X-rays, neutrons are able to penetrate thick layers of metals and provide on the other hand a high sensitivity to hydrogen containing materials. In recent years, a large number of applications in other fields like biology, medicine, geology and especially archaeology have been reported. Here the potential of neutron tomography for investigations on archa…
The chemistry of acetone at extreme conditions by density functional molecular dynamics simulations
Density functional molecular dynamics simulations have been performed in the NVT ensemble (moles (N), volume (V) and temperature (T)) on a system formed by ten acetone molecules at a temperature of 2000 K and density ρ = 1.322 g cm(-3). These conditions resemble closely those realized at the interface of an acetone vapor bubble in the early stages of supercompression experiments and result in an average pressure of 5 GPa. Two relevant reactive events occur during the simulation: the condensation of two acetone molecules to give hexane-2,5-dione and dihydrogen and the isomerization to the enolic propen-2-ol form. The mechanisms of these events are discussed in detail.
Tecniche Neutroniche per Indagini Diagnostiche su Materiali di Interesse Archeologico
Two-Length-Scale Structure in Some Computer-Generated Aggregates Grown by Diffusion-Limited Aggregation
AbstractThe properties of some aggregates “grown” on a computer by diffusion-limited aggregation have been investigated. Calculations showed that the intensity of the small-angle x-ray and neutron scattering from the aggregates was proportional to q−D for qL ≫ 1, where D > 0, L is a length that characterizes the large-scale structure of the aggregate, q = 4πλ−1 sin(θ/2), γ is the wavelength, and θ is the scattering angle. The magnitude of the exponent D was appreciably smaller than the fractal dimensions that many simulations have shown to be typical of the mass fractal aggregates grown by diffusion-limited aggregation. The calculations suggest that the aggregates have structure on two d…
Structural and dynamical characterization of melt PEO–salt mixtures
Abstract Salt doped poly ethylene oxide (PEO) mixtures were investigated by means of both small angle neutron scattering and QENS techniques aiming to characterize morphological and dynamical features in the melt state. These experimental evidences provide support to the proposed heterogeneous scenario for polymer electrolytes. In particular, the existence of PEO–cation complexes is proposed to play a major role in intramolecular cooperation and intermolecular transient crosslinks, which affects the mixture properties.
Neutron tomography of ancient lead artefacts
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich. This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. The investigations presented here show the results of an epigraphic analysis on ancient Roman lead ingots rescued from shipwrecks along the coast of Sicily (Italy) by means of Neutron Tomography (NT). The artefacts, including a lead horn, can be dated back to a period between the 3rd and 1st century BC. The three dimensional NT reconstructions helped the decipherment of hidden s…
Application of the small-angle neutron scattering technique to the study of solubilization mechanisms of organic molecules by micellar systems
Abstract We present the possible contribution of the small-angle neutron scattering (SANS) technique to the molecular interpretation of the solubilization phenomena in simple micellar systems. We show for a few ternary micellar systems, that an appropriate analysis of SANS experimental data can provide information on modifications induced on micellar dimension, shape, number of monomer, and charge and on the partition coefficient of the additive and its localization inside the micellar aggregate. The influence of n -alcohols on the thermodynamics and on the structure of sodium dodecyl sulphate (SDS) aqueous solution has been extensively investigated, so the agreement between the results obt…
Study of percolation and clustering in supercritical water-CO2 mixtures
The microscopic structure of supercritical water-CO(2) mixture is investigated by neutron diffraction experiments exploiting the isotopic HD substitution. The investigated water reach mixtures are in the liquidlike region of the phase diagram, according to the behavior of the radial distribution functions, yet a reduction of the average number of hydrogen bonds, compared to equivalent states of pure water, is found. As a consequence, the average dimension of water clusters is reduced and the system stays below the percolation threshold. These results, along with the shift of the main peaks of the site-site radial distribution functions, suggest that the excess volume in these supercritical …
Applied neutron tomography in modern archaelogy
The use of neutron tomography for archaeometric purposes is quite a new technique. The property of neutron to transmit easily large, dense samples is of great importance in modern archaeology. The three-dimensional visualisation of the inner structure of samples of archaeological interest helps to make suggestions about the technological process of manufacturing or reveals information about the origins of delivering of noble materials used in ancient masterpieces. Another application field in modern archaeology is the non-destructive inspection of the quality of specimen conservation where the neutron tomography allows visualization of impregnation solutions in wood or metal matrices. The h…
Phase separation in multi-component mixtures: the four-component case
Abstract Calculation of ternary phase diagrams for several mixtures formed by two salts and a neutral component is presented here. The phase diagrams are obtained by inspection of the shape of the Gibbs free energy of mixing surface (Gmix) as a function of the composition at constant temperature and pressure. The Gmix surface is calculated by the mean spherical approximation (MSA). The model for the mixtures is represented by hard spheres, with the charged components interacting via a Coulomb potential. The results are interpreted in terms of a thermodynamic analysis of the contributions to the Gibbs free energy of mixing, i.e., the configurational energy, the volume and the entropy of mixi…
Slow Crystallization Kinetics of Poly(vinyl alcohol) in Confined Environment during Cryotropic Gelation of Aqueous Solutions
The gelation kinetics of aqueous solutions of poly(vinyl alcohol) (PVA) during freezing at −13 °C has been investigated with time-resolved small angle neutron scattering. Crystallization of PVA takes place inside an unfrozen liquid microphase that forms in the matrix of ice crystals and follows a first-order kinetics during the early stages and becomes very slow in the later stages with an apparent Avrami exponent lower than 1. Crystallization of PVA at low temperatures is responsible of formation of strong physical gels upon defrosting, provided that the concentration of PVA is higher than a critical value.
Combined USANS/SANS Measurements in Archaeometry
Correlation spectroscopy in molten and supercooled antimony trichloride.
Correlation spectroscopy measurements performed on molten and supercooled antimony trichloride with the homodyne technique show correlation functions that have a nonexponential behavior. Two well-defined distributions of correlation times can be observed in different temporal regions. This behavior is discussed in terms of a structural relaxation of clusters dynamically formed by intermolecular and interchain bonds. The Arrhenius plot of these correlation times shows a linear behavior with the same activation energy for both. In contrast, the activation energy of shear viscosity has a different value, showing that the processes determining the temperature behavior of \ensuremath{\tau} and $…
Morphology of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids
The structural organization in selected room temperature ionic liquids, namely (a) butyl-, (b) hexyl- and (c) octyl-3-methylimidazolium hexafluorophosphate, is investigated by means of X-ray diffraction. We find novel experimental evidences of the existence of a high degree of intermediate range order that is associated to nanoscale segregation of the alkyl chains into the charged matrix. The size of these structural heterogeneities depends linearly from the alkyl chain length. A similar behaviour had been observed in other systems, such as normal alcohols. The slope of such dependence provides hints on the nature of the structural organization of these segregated domains.
Combined SANS and SAXS experiments in polyolefins-hydrogenated oligocyclopentadiene (HOCP) blends
Abstract Lamellar morphology in semicrystyalline polymer blends (iPP/HOCP and HDPE/HOCP) is investigated by means of Small Angle X-ray Scattering (SAXS) and Small Angle Neutron Scattering (SANS). The investigated blends present a complex phase diagram, as they show a miscibility gap. SAXS scattering curves of blends lying outside the miscibility gap can be analysed in the frame of the psuedo two phase model. In order to describe the complex morphology of blends lying inside the miscibility gap, the SANS technique revealed necessary. In this paper a novel method to describe the morphology of these complex systems by means of SANS is presented.
Critical phenomena originating magmatic rocks in western Sicily.
The behaviour of a model magma in the vicinity of a critical region is in agreement with results of studies of structures in the melt in basaltic rocks from Sicily. The behaviour of ionic-non ionic fluid mixtures simulating a magma has been analysed in the light of results obtained recently with simple statistical mechanical approximations. It is suggested that the Sicilian magma is to be considered as an extremely rare natural example of two immiscible liquids having almost consolute composition.
Structure of isotactic polypropylene/ hydrogenated oligo(cyclopentadiene) blends: 1. Polypropylene-rich blends
Blends of isotactic polypropylene (iPP) and hydrogenated oligo(cyclopentadiene) (HOCP) containing 30% or less HOCP have been studied by small-angle X-ray scattering in the temperature range 25 to 160°C. The structure of blends has been analysed in terms of a pseudo two-phase model consisting of stacks of lamellae whose thickness is a function of temperature and composition. Structural parameters of the model have been derived and their temperature and composition dependences have been interpreted in the light of existing theories.
Morphology of hybrid polystyrene-block-poly(ethylene oxide) micelles: Analytical ultracentrifugation and SANS studies
Abstract Morphology and structure of aqueous block copolymer solutions based on polystyrene- block -poly(ethylene oxide) (PS- b -PEO) of two different compositions, a cationic surfactant, cetyl pyridinium chloride (CPC), and either platinic acid (H 2 PtCl 6 ⋅6H 2 O) or Pt nanoparticles were studied using a combination of analytical ultracentrifugation (AUC), transmission electron microscopy (TEM), and small angle neutron scattering (SANS). These studies combining methods contributing supplemental and analogous structural information allowed us to comprehensively characterize the complex hybrid systems and to discover an isotope effect when H 2 O was replaced with D 2 O. In particular, TEM s…
CO(2)-water supercritical mixtures: Test of a potential model against neutron diffraction data
Abstract A neutron diffraction experiment on supercritical mixtures of water and CO 2 at two concentrations is presented. Data are analyzed within the EPSR framework and the water–water and water–CO 2 radial distribution functions are compared with those calculated by a Molecular Dynamics simulation performed by using the TIPS2 and EPM-M potential models for water and CO 2 respectively. It is found that the Molecular Dynamics simulation reproduces the overall shape of the site–site radial distribution functions, although missing a few subtle changes brought along when the CO 2 concentration is increased.
Small angle neutron scattering studies of critical phenomena in a three-component microemulsion
Critical density fluctuations of a ``water-in-oil`` microemulsion consisting of water, benzene, and BHDC (benzyldimethyl-n-hexadecyl ammonium chloride) were observed near the phase boundary by SANS. Observed profiles were well described by product of a form factor of spherical droplets and a structure factor, consisting of a term describing the inter-droplet correlations and also an Ornstein- Zernike component describing the droplet density fluctuations. Allowance was also made fro droplet polydispersity,though the width of the distribution turned out to be very small (1-2%). Observed temperature dependence of osmotic compressibility was fitted using the crossover function proposed by Belya…
Segmental dynamics in polymer electrolytes
Polymer dynamics in poly(ethylene oxide) (PEO)–salt mixtures is investigated by means of quasi-elastic neutron scattering (QENS). In a previous study, we reported QENS data from the NEAT spectrometer (BENSC) that evidenced, for the first time, a dynamic heterogeneity in PEO–salt mixtures induced by salt addition. This finding is supported by molecular dynamics (MD) simulations carried out by Borodin et al. In agreement with MD simulations, our QENS data revealed two distinct processes: a fast motion corresponding to the bulk polymer and a slower relaxation, which we attribute to formation of PEO–cation complexes. In this paper we present new QENS data from the high-resolution spectrometer I…
Mesoscopic and Microscopic Investigation on Poly(vinyl alcohol) Hydrogels in the Presence of Sodium Decylsulfate
The structure of poly(vinyl alcohol) (PVA) hydrogels formed as a result of freeze/thaw treatments of aqueous solutions of the polymer (11 wt % PVA) in the freshly prepared state is analyzed through the combined use of small (SANS) and ultrasmall (USANS) angle neutron scattering techniques. The structure of these hydrogels may be described in terms of polymer rich regions, with dimensions of the order of 1-2 microm, dispersed in a water rich phase, forming two bicontinuous phases. The PVA chains in the polymer rich phase form a network where the cross-linking points are mainly crystalline aggregates of PVA having average dimensions of approximately 45 A. The structural organization of freeze…
Pressure-Induced Formation of Diblock Copolymer "Micelles" in Supercritical Fluids. A Combined Study by Small Angle Scattering Experiments and Mean-Field Theory. I: the Critical Micellization Density Concept
We developed a simple mean-field theory to describe polymer and AB diblock copolymer phase separation in supercritical (SC) fluids. The highly compressible SC fluid has been described by using a phenomenological hole theory, properly extended to consider the solvent/polymer/vacancy pseudoternary mixture. The model has been applied to describe the phase behavior of AB-diblock copolymers under the assumption of a strong solvent selectivity for just one copolymer chain. In our model the solvent selectivity is a strong function of the external pressure because in compressible fluids vacancies reduce the number of favorable solvent-polymer contacts. The combined effect of the pressure on the ave…
The Combined Ultra-Small- and Small-Angle Neutron Scattering (USANS/SANS) Technique for Earth Sciences
The extension of the well-known Small-Angle Neutron Scattering (SANS) technique to Ultra-Small Angles (USANS) provides a unique tool for studying hierarchical structures ranging in size from nanometers to micrometers. Hierarchical structures are common for many natural and man-made materials, which show multi-level morphology (atoms–molecules–aggregates–agglomerates), in other words, are made up of structural units encompassing the atomic, molecular, micro- and macroscopic length scales. Combining USANS and SANS data can provide complete structural information for complicated polydisperse systems, allowing the determination of their complex morphology and hence has been successfully applied…
Application of Neutron Techniques in Archaeometry
Morphology of solid polymer electrolytes: a TR WAXS investigation
A wide angle X-ray scattering investigation of (polyethylene oxide)n–sodium thiocyanate [(PEO)nNaSCN] mixtures is reported. Temperature dependence analysis for different mixtures is shown, in order to rationalize the multi-phase behaviour. Depending on the amount of salt added and upon the temperature considered three different phases have been found to simultaneously coexist: crystalline PEO, amorphous PEO, and crystalline complex.
Small Angle Neutron Scattering from Systems of Interacting Particles. Modelling High Density Micellar Fluids
The need for analytical solutions of the scattering equation for complex situations (polydisperse samples, scattering from non centrosymmetrical particles, etc.) has somehow escaped the attention of the workers in the Small Angle Scattering field, although it is clear that, at the level of sophistication today available for the experiments, a more rigorous approach is necessary. For quite a few years our group has been actively engaged in SANS research and has occasionally devoted its attention to develop alternative ways of data analysis based on more rigorous solutions of the scattering equation.
Dynamic heterogeneity in polymer electrolytes. Comparison between QENS data and MD simulations
Abstract We have investigated the dynamics of poly(ethylene oxide) (PEO) lithium-based salt electrolytes (PEO–LiBETI) using quasi-elastic neutron scattering (QENS). Measurements were carried out on the spectrometer NEAT (HMI, Berlin) above the melting temperature of PEO ( T m ≈65°C). The experimental data fully support the Molecular Dynamics (MD)-derived model of a heterogeneous dynamics in dilute PEO-salt electrolytes. In agreement with MD simulations carried out on PEO–LiPF 6 , we find evidences for the existence of two dynamic processes: (a) a faster process that is described in terms of the pure PEO dynamics and (b) a second component which we identify with the slower motion of the PEO …
Critical micellisation density: a SAS structural study of the unimer–aggregate transition of block-copolymers in supercritical CO2
In this paper we report a SANS investigation of micelle formation by fluorocarbon-hydrocarbon block copolymers in supercritical CO2 (scCO2) at 313K. A sharp unimer-micelle transition is obtained due to the tuning of the solvating ability of scCO2 by profiling pressure. At high pressure the copolymer is in a monomeric state with a random coil structure. By lowering the pressure aggregates are formed with the hydrocarbon segments forming the core and the fluorocarbon segments forming the corona of spherical aggregates. This aggregateunimer transition is driven by the gradual penetration of CO2 molecules toward the core of the aggregate and is critically related to the density of the solvent, …
Small-Angle Neutron Scattering from Aqueous Solutions of C12E6 and C12E8: Critical Fluctuations and Micellar Growth
Static SANS measurements have been performed on 0.028 M C12E8 in D2O over the temperature range 20–74.2 °C. Little micellar growth is observed; increases in the scattered intensities in the low angle region are due to critical concentration fluctuations of correlation length g. We have also reexamined our SANS data for C12E6 in D2O, in light of other worker’s claims that a sphere-to-cylinder transition in micellar shape is occurring in these solutions. We discuss in detail the inferences about C12E6 micellar size drawn from the results of several different experimental techniques.
Archaeometric Applications of X-Ray and Neutron Techniques
Cultural Heritage is part of our everyday life and its conservation is extremely important not only from the cultural point of view, but also from a practical one. This is particularly true for Italy, a country which lists the highest number of World Heritage sites. Italian heritage, largely embodied in buildings and works of art, has a wider range of interests. For example information buried in sunk ships is very important when trying to gain information on commercial routes, exchange of technology and similar. In the case of stones authentication of works of art in museums is also of great concern, particularly as a number of rather expensive fakes have been acquired by museums from dubio…
Study on the thermotropic properties of highly fluorinated 1,2,4-oxadiazolylpyridinium salts and their perspective applications as ionic liquid crystals
A new series of fluorinated salts, iodides and trifluoromethanesulfonates, was synthesized from perfluoroalkylated 1,2,4-oxadiazolylpyridines. Their thermotropic properties were investigated by combined temperature resolved small angle and wide angle X-ray scattering, differential scanning calorimetry and polarised optical microscopy. The UV–visible and photoluminescence properties were studied for all compounds. The results showed for two compounds the existence of an enantiotropic mesomorphic smectic liquid crystal phase. All iodides showed thermochromism phenomena suggesting prospective applications in optoelectronics.
Fractal approach in petrology: Small-angle neutron scattering experiments with volcanic rocks.
Following Mandelbrot's pioneering work in 1977, we attempt to use the concept of fractal dimension in petrology. Fractal dimension is an intensive property of matter which offers a quantitative measure of the degree of surface roughness. Neutron scattering experiments have been performed on 18 volcanic rocks from different localities. The scattered intensity as a function of the momentum transfer obeys a power law whose exponent varies, for the rock samples presented, between -3 and -4. We conclude that, at the molecular level, our volcanic rocks are not fractal volumes. With regard to the particle-matrix interface, it is not possible to provide a determination at the present stage of resea…
Investigation of Wood Materials by Combined Application of X-ray and Neutron Imaging Techniques*
Abstract Conservation of cultural heritage is extremely important not only from a cultural point of view, but also from a practical one. It is our duty to pass on to future generations the cultural heritage left to us by our ancestors. Wood is one of the most common materials used to generate works of art which are in a state of constant change and/or deterioration. In order to optimize the knowledge of artworks together with their conservation, it is necessary to use the most advanced scientific and technological tools. In the following paper, we will show the tomographic results which can be achieved by application of complementary techniques based on the combined use of X-ray and neutron…
Investigating self-assembly and metal nanoclusters in aqueous di-block copolymers solutions
Self-assembling properties of di-block copolymers/ surfactant hybrids in aqueous solution can be exploited to obtain metal nanoparticles stable dispersion. Results will be presented here for polystyrene-block-poly(ethylene oxide) solutions. A SANS structural investigation has been performed over different molecular weights of both hydrophilic and hydrophobic block, by varying temperature and concentration of the copolymer. A SAXS characterization of micellar systems containing Pt nanoparticles is reported.
Neutron scattering characterization of homopolymers and graft-copolymer micelles in supercritical carbon dioxide
Abstract Superficial fluids (SCF) are becoming an attractive alternative to the liquid solvents traditionally used as polymerization media [1]. As the synthesis proceeds, a wide range of colloidal aggregates form, but there has hitherto been no way to measure such structures directly. We have applied small-angle neutron scattering (SANS) to characterize such systems, and although SCF polymerizations are carried out at high pressures, the penetrating power of the neutron beam means that typical cell windows are virtually transparent. Systems studied include polymers soluble in CO 2 such as poly(1,1-dihydroperfluorooctyl acrylate) (PFOA), poly(hexafluoropropylene oxide) (PHFPO) and poly(dimet…
Neutron tomography for archaeological investigations
Organometallic complexes with biological molecules: XIII. Organotin(IV)[meso-tetra (4-carboxyphenyl)porphinate]s and the cell cycle: a flow-cytometric approach
The cytotoxic derivatives diorganotin(IV) and triorganotin(IV) [meso-tetra(4-carboxyphenyl)porphinates, with stoichiometries [R2Sn]2TPPC and [R3Sn]4TPPC [R = Me, Bu, Ph; TPPC4−= meso-tetra(4-carboxyphenyl)porphinate4−], namely bis[dimethyltin(IV)], bis[dibutyltin(IV)], bis[diphenyltin(IV)], tetra[trimethyltin(IV)], tetra[tributyltin(IV)] and tetra[triphenyltin(IV)] [meso-tetra(4-carboxyphenyl)porphinate]s, have been used to investigate their effects on the cultured human kidney cell cycle in order to understand further the origin of cell-growth inhibition induced by the above-mentioned chemicals. The cell-cycle-dependent DNA content distribution of cultured cells exposed to these compounds…
On the nature of phase separation in a commercial aluminium-lithium alloy
Abstract The formation of lithium-rich precipitate particles, known as δ′ phase, is responsible for the particularly desirable mechanical properties which make aluminium-lithium alloys interesting for different industrial applications. The structure and the kinetics of the phase separation process are conveniently studied by small-angle X-ray scattering, though uncertainties remain on the actual shape of the phase diagram of the system, particularly in the region of interest. In this paper are reported small-angle X-ray scattering measurements on a commercial AlLi (8.49% Li atoms) both in the region of formation of the precipitate and during its successive growth. Modelling of the experime…
A combined small-angle neutron and X-ray scattering study of block copolymers micellisation in supercritical carbon dioxide
Small angle neutron and X-ray scattering (SANS and SAXS) are used to investigate the monomer–aggregate transition of fluorocarbon–hydrocarbon diblock copolymers in supercritical carbon dioxide. SANS data are analyzed using a polydisperse sphere core–shell model. Synchrotron SAXS data have been collected by profiling the pressure at different temperatures, and critical micellization densities have been obtained for a series of diblock solutions. Finally pressure jump experiments, combined with synchrotron SAXS, have revealed two steps in the dynamics of the formation of the aggregates.
Application of small angle neutron scattering to micellar fluids
Abstract In this paper we present a short overview of the application of small angle neutron scattering (SANS) to micellar fluids. In the first part of the paper a general expression of the scattering equation is derived, with particular emphasis on the approximations involved and on their practical consequences. In the second part of the paper we present six selected test cases (such as mono- and polydisperse fluids, critical fluids, shapes other than spherical, etc.) taken from our own work, to demonstrate the kind of analysis performed in each case to extract the information from SANS data.
Small angle scattering study of the structure of isotactic polypropylene-hydrogenated oligo(cyclopentadiene) blends
Abstract Blends of isotactic polypropylene ( i PP) and hydrogenated oligo cyclopentadiene (HOCP) have been studied by means of small angle X-ray scattering in the temperature range 70–160°C. The structure of blends containing less than 25% HOCP is very similar to the one of plain i PP, i.e. lamellae whose thickness increases by increasing the temperature. Blends containing more than 25% HOCP are characterized by two kinds of lamellae formed by layers of i PP and amorphous material rich in i PP and in HOCP, respectively. The crystallizable i PP present in both phases crystallizes from the melt, in analogy to what happens in HDPE/HOCP blends and in agreement with the values of the crystallini…