0000000000034661

AUTHOR

J. Mikko Rautiainen

Host–Guest Interactions of Sodiumsulfonatomethyleneresorcinarene and Quaternary Ammonium Halides: An Experimental–Computational Analysis of the Guest Inclusion Properties

The molecular recognition of nine quaternary alkyl- and aryl-ammonium halides (Bn) by two different receptors, Calkyl-tetrasodiumsulfonatomethyleneresorcinarene (An), were studied in solution using...

research product

Computational thermochemistry: extension of Benson group additivity approach to organoboron compounds and reliable predictions of their thermochemical properties

High-level computational data for standard gas phase enthalpies of formation, entropies, and heat capacities are reported for 116 compounds of boron. A comparison of the results with extant experimental and computational benchmark values reveals important trends and clear outliers. Recommendations are made to revise some of the key quantities, such as the enthalpies of formation of orthoboric acid, trimethylthioborate, and triphenylborane, the last of which is found to be considerably in error. The uncertainties associated with the experimental values are found to exceed those of high-level calculations by a clear margin, prompting the redetermination of Benson group additivity contribution…

research product

Chalcogen‐Bonding Interactions in Telluroether Heterocycles [Te(CH2)m]n (n=1-4; m=3-7)

The Te…Te secondary bonding interactions (SBI) in solid heterocyclic telluroethers were explored by preparing and structurally characterizing a series of [Te(CH2)m]n (n = 1‐4; m = 3‐7) species. The SBIs in 1,7‐Te2(CH2)10, 1,8‐Te2(CH2)12, 1,5,9‐Te3(CH2)9, 1,8,15‐Te3(CH2)18, 1,7,13,19‐Te4(CH2)20, 1,8,15,22‐Te4(CH2)24, and 1,9,17,25‐Te4(CH2)28 led to the tubular packing of the molecules, as has been observed previously for related thio‐ and selenoether rings. The nature of the intermolecular interactions was explored by solid‐state PBE0‐D3/pob‐TZVP calculations involving periodic boundary conditions. The packing of molecules in 1,7,13,19‐Te4(CH2)20, 1,8,15,22‐Te4(CH2)24, and 1,9,17,25‐Te4(CH2)…

research product

Synthesis, Characterization, and Properties of Weakly Coordinating Anions Based on tris-Perfluoro-tert-Butoxyborane

A convenient method for the preparation of strongly Lewis acidic tris-perfluoro-tert-butoxyborane B(ORF)3 (1), (ORF = OC(CF3)3) was developed, and its X-ray structure was determined. 1 was used as a precursor, guided by density functional theory (DFT) calculations and volume-based thermodynamics, for the synthesis of [NEt4][NCB(ORF)3] (3) and [NMe4][FB(ORF)3] (5) and the novel large and weakly coordinating anion salts [Li 15-Crown-5][B(ORF)4] (2) and [NEt4][CN{B(ORF)3}2] (4). The stability of [B(ORF)4]− was compared with that of some related known weakly coordinating anions by appropriate DFT calculations.

research product

High-Level Ab Initio Predictions of Thermochemical Properties of Organosilicon Species: Critical Evaluation of Experimental Data and a Reliable Benchmark Database for Extending Group Additivity Approaches

A high-level composite quantum chemical method, W1X-1, is used herein to calculate the gas-phase standard enthalpy of formation, entropy, and heat capacity of 159 organosilicon compounds. The results set a new benchmark in the field that allows, for the first time, an in-depth assessment of existing experimental data on standard enthalpies of formation, enabling the identification of important trends and possible outliers. The calculated thermochemical data are used to determine Benson group additivity contributions for 60 Benson groups and group pairs involving silicon. These values allow fast and accurate estimation of thermochemical parameters of organosilicon compounds of varying comple…

research product

Ruthenium‐assisted tellurium abstraction in bis(thiophen‐2‐yl) ditelluride

The reaction of [RuCl2(CO)3]2 and Te2Tpn2 (Tpn = thiophen-2-yl, C4H3S) in the absence of light resulted in the formation of cct-[RuCl2(CO)2(TeTpn2)2] (1) [cis(Cl)-cis(CO)-trans(TeTpn2)] and TeTpn2 (2) together with the precipitation of tellurium. The complex 1 and the monotelluride 2 were characterized by NMR spectroscopy and single-crystal X-ray diffraction. The decomposition of Te2Tpn2 to TeTpn2 has been monitored by 125Te NMR spectroscopy and seemed to be faster than the ligand substitution in [RuCl2(CO)3]2 by TeTpn2. A catalytic cycle is proposed for the decomposition of Te2Tpn2 to TeTpn2 based on the PBE0-D3/def2-TZVP calculations. peerReviewed

research product

The C–I···–O–N+ Halogen Bonds with Tetraiodoethylene and Aromatic N-Oxides

The nature of C–I⋯⁻O–N⁺ interactions, first of its kind, between non-fluorinated tetraiodoethylene XB-donor and pyridine N-oxides (PyNO) are studied by single-crystal X-ray diffraction (SCXRD) and ...

research product

Low‐Valent Germanylidene Anions: Efficient Single‐Site Nucleophiles for Activation of Small Molecules

Abstract Rare mononuclear and helical chain low‐valent germanylidene anions supported by cyclic (alkyl)(amino)carbene and hypermetallyl ligands were synthesised by stepwise reduction from corresponding germylene precursors via stable and isolable germanium radicals. The electronic structures of the anions can be described with ylidene and ylidone resonance forms with the Ge−C π‐electrons capable of binding even weak electrophiles. The germanylidene anions reacted with CO2 to give μ‐CO2‐κC:κO complexes, a rare coordination mode for low‐valent germanium and inaccessible for the related neutral germylones. These results implicate low‐valent germanylidene anions as efficient single‐site nucleop…

research product

Titanocene Selenide Sulfides Revisited: Formation, Stabilities, and NMR Spectroscopic Properties

[TiCp2S5] (phase A), [TiCp2Se5] (phase F), and five solid solutions of mixed titanocene selenide sulfides [TiCp2SexS5−x] (Cp = C5H5−) with the initial Se:S ranging from 1:4 to 4:1 (phases B–E) were prepared by reduction of elemental sulfur or selenium or their mixtures by lithium triethylhydridoborate in thf followed by the treatment with titanocene dichloride [TiCp2Cl2]. Their 77Se and 13C NMR spectra were recorded from the CS2 solution. The definite assignment of the 77Se NMR spectra was based on the PBE0/def2-TZVPP calculations of the 77Se chemical shifts and is supported by 13C NMR spectra of the samples. The following complexes in varying ratios were identified in the CS2 solutions of …

research product

Front Cover: Chalcogen‐Bonding Interactions in Telluroether Heterocycles [Te(CH 2 ) m ] n ( n= 1–4; m= 3–7) (Chem. Eur. J. 61/2020)

research product

Insights into the decomposition pathway of a lutetium alkylamido complex via intramolecular C–H bond activation

Abstract Synthesis, characterization and reaction chemistry of lutetium alkylamido LLu(CH2SiMe3)(NHCPh3) (2), L = 2,5-[Ph2P=N(4-iPrC6H4)]2N(C4H2)–, is reported. Complex 2 undergoes cyclometalation of the NHCPh3 ligand at elevated temperatures to produce the orthometalated complex LLu(κ2−N,C-(NHCPh2(C6H4))) (3) which converts to 0.5 equivalents of bis(amido) LLu(NHCPh3)2 (4) upon heating at 80 °C for 24 h. Reaction of complex 2 with 4-dimethylaminopyridine (DMAP) does not promote alkane elimination nor imido formation. A kinetic analysis of the thermal decomposition of complex 2, supported by deuterium labelling studies and computational analysis (PBE0/def2-TZVP/SDD(Lu)), indicate direct Csp…

research product

Tridentate C–I⋯O−–N+ halogen bonds

The X-ray structures of the first co-crystals where the three oxygen lone pairs in N-oxides are fully utilized for tridentate C–I⋯O−–N+ halogen bonding with 1,ω-diiodoperfluoroalkanes are reported, studied computationally, and compared with the corresponding silver(I) N-oxide complexes.

research product

Studies of Nature of Uncommon Bifurcated I–I···(I–M) Metal-Involving Noncovalent Interaction in Palladium(II) and Platinum(II) Isocyanide Cocrystals

Two isostructural trans-[MI2(CNXyl)2]·I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal–iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed …

research product

Benson group additivity values of phosphines and phosphine oxides: Fast and accurate computational thermochemistry of organophosphorus species

Composite quantum chemical methods W1X-1 and CBS-QB3 are used to calculate the gas phase standard enthalpy of formation, entropy, and heat capacity of 38 phosphines and phosphine oxides for which reliable experimental thermochemical information is limited or simply nonexistent. For alkyl phosphines and phosphine oxides, the W1X-1, and CBS-QB3 results are mutually consistent and in excellent agreement with available G3X values and empirical data. In the case of aryl-substituted species, different computational methods show more variation, with G3X enthalpies being furthest from experimental values. The calculated thermochemical data are subsequently used to determine Benson group additivity …

research product

Zirconocene-Based Methods for the Preparation of BN-Indenes : Application to the Synthesis of 1,5-Dibora-4a,8a-diaza-1,2,3,5,6,7-hexaaryl-4,8-dimethyl-s-indacenes

A method for the preparation of 3-bora-9aza-indene heterocycles based on zirconocene mediated functionalization of the ortho-CH bonds of pyridines has been developed and used to make two such compounds. Unlike other methods, the boron center in these heterocycles remains functionalized with a chloride ligand and so the compounds can be further elaborated through halide abstraction and reduction. The utility of the method was further demonstrated by applying it towards the preparation of 1,5- dibora-4a,8a-diaza BN analogues of the intriguing hydrocarbon s-indacene starting from 2,5-dimethylpyrazine. Gram quantities of one such compound was prepared and fully characterized, and both experimen…

research product

Divergent reactivity of nucleophilic 1-bora-7a-azaindenide anions

The reactions of 1-bora-7a-azaindenide anions, prepared in moderate to excellent yields by reduction of the appropriate 1-bora-7a-azaindenyl chlorides with KC8 in THF, with alkyl halides and carbon dioxide were studied. With alkyl halides (CH2Cl2, CH3I and BrCH(D)CH(D)tBu), the anions behave as boron anions, alkylating the boron centre via a classic SN2 mechanism. This was established with DFT methods and via experiments utilizing the neo-hexyl stereoprobe BrCH(D)CH(D)tBu. These reactions were in part driven by a re-aromatization of the six membered pyridyl ring upon formation of the product. Conversely, in the reaction of the 1-bora-7a-azaindenide anions with CO2, a novel carboxylation of …

research product

Chalcogen‐Bonding Interactions in Telluroether Heterocycles [Te(CH2)m]n(n=1–4;m=3–7)

The Te⋅⋅⋅Te secondary bonding interactions (SBIs) in solid cyclic telluroethers were explored by preparing and structurally characterizing a series of [Te(CH2 )m ]n (n=1-4; m=3-7) species. The SBIs in 1,7-Te2 (CH2 )10 , 1,8-Te2 (CH2 )12 , 1,5,9-Te3 (CH2 )9 , 1,8,15-Te3 (CH2 )18 , 1,7,13,19-Te4 (CH2 )20 , 1,8,15,22-Te4 (CH2 )24 and 1,9,17,25-Te4 (CH2 )28 lead to tubular packing of the molecules, as has been observed previously for related thio- and selenoether rings. The nature of the intermolecular interactions was explored by solid-state PBE0-D3/pob-TZVP calculations involving periodic boundary conditions. The molecular packing in 1,7,13,19-Te4 (CH2 )20 , 1,8,15,22-Te4 (CH2 )24 and 1,9,17,…

research product

Halogen Bonding between Thiocarbonyl Compounds and 1,2- and 1,4-Diiodotetrafluorobenzenes

The halogen bonding (XB) between 1,2-diiodotetrafluorobenzene (1,2-DITFB) or 1,4-diiodotetrafluorobenzene (1,4-DITFB) and the selection of different thiocarbonyl acceptors was studied by the single-crystal X-ray diffraction method. Diiodotetrafluorobenzenes (DITFBs) were found to form C-I···S halogen-bonded 1:1, 2:1, and 1:2 (donor/acceptor ratio) complexes with thiocarbonyls. Lengths of contacts were found to be clearly shorter than the sum of van der Waals radii of iodine and sulfur as well as the contact angles showed values close to linear, so the XB interactions could be verified. One sulfur atom showed the ability to accept one, two, or four XB interactions, and the acceptor angle can…

research product

Acylchalcogenourea Complexes of Silver(I)

Acylthio- or acylselenoureas react with silver(I) oxide to form tetranuclear silver(I) complexes containing the deprotonated acylchalcogenourea ligands bound to the silver atoms through the chalcogen and oxygen atoms. These tetrasilver(I) species react with either 4 or 8 equiv. of a phosphine to afford either dinuclear silver(I) phosphine complexes or tetrahedral silver diphosphine complexes. In these compounds, the acylchalcogenourea ligands form six-membered rings by coordinating to the metal atom through the chalcogen and oxygen atoms. In one case, we observed a very rare example of an acylthiourea ligand coordinated through the nitrogen and sulfur atoms to form a four-membered ring. A s…

research product

Boron–nitrogen substituted dihydroindeno[1,2-b]fluorene derivatives as acceptors in organic solar cells

The electrophilic borylation of 2,5-diarylpyrazines results in the formation of boron–nitrogen doped dihydroindeno[1,2-b]fluorene which can be synthesized using standard Schlenk techniques and worked up and handled readily under atmospheric conditions. Through transmetallation via diarylzinc reagents a series of derivatives were synthesized which show broad visible to near-IR light absorption profiles that highlight the versatility of this BN substituted core for use in optoelectronic devices. The synthesis is efficient, scalable and allows for tuning through changes in substituents on the planar heterocyclic core and at boron. Exploratory evaluation in organic solar cell devices as non-ful…

research product

Host-Guest Interactions of Sodiumsulfonatomethyleneresorcinarene and Quaternary Ammonium Halides : An Experimental-Computational Analysis of the Guest Inclusion Properties

The molecular recognition of nine quaternary alkyl- and aryl-ammonium halides (Bn) by two different receptors, Calkyl-tetrasodiumsulfonatomethyleneresorcinarene (An), were studied in solution using 1H NMR spectroscopy. Substitution of methylenesulfonate groups at 2-positions of resorcinol units resulted in an increase of cavity depth by ∼2.80 Å and a narrow cavity aperture compared to Calkyl-2-H-resorcinarenes. The effect of alkyl chain lengths on the endo-complexation, that is the ability to incorporate other than N-methyl chains inside the cavities, were investigated using ammonium cations of the type ⁺NH2(R1)(R2), (R1 = Me, Et, Bu, R2 = Bu, Ph, Bz ). The C−H⋯ interactions between guests …

research product

Strong N−X⋅⋅⋅O−N Halogen Bonds: A Comprehensive Study on N‐Halosaccharin Pyridine N ‐Oxide Complexes

A study of the strong N-X⋅⋅⋅- O-N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N-halosaccharins and pyridine N-oxides (PyNO). DFT calculations were used to investigate the X⋅⋅⋅O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X⋅⋅⋅O XBs. The XB interaction energies vary from -47.5 to -120.3 kJ mol-1 ; the strongest N-I⋅⋅⋅- O-N+ XBs approaching those of 3-center-4-electron [N-I-N]+ halogen-bonded systems (ca. 160 kJ mol-1 ). 1 H NMR association constants (KXB ) determined in CDCl3 and [D6 ]acetone vary from 2.0×100 to >108  m-1 and correlate well with the calculat…

research product

Halogen-Bonded Mono-, Di-, and Tritopic N-Alkyl-3-iodopyridinium Salts

Halogen bonding interactions of 15 crystalline 3-iodopyridinium systems were investigated. These systems were derived from four N-alkylated 3-iodopyridinium salts prepared in this study. The experimental results in the solid state show that halogen bonding acts as a secondary intermolecular force in these charged systems but sustains the high directionality of interaction in the presence of other intermolecular forces. Halogen bonds donated by polytopic 3-iodopyridinium cations are also sufficient to enclose guest molecules inside the formed supramolecular cavities. The experimental data were supplemented by computational gas-phase and solid-state studies for selected halogen-bonded systems…

research product

Experimental and computational investigation on the formation pathway of [RuCl2(CO)2(ERR′)2] (E = S, Se, Te; R, R′ = Me, Ph) from [RuCl2(CO)3]2 and ERR′

The pathways to the formation of the series of [RuCl2(CO)2(ERR′)2] (E = S, Se, Te; R, R′ = Me, Ph) complexes from [RuCl2(CO)3]2 and ERR′ have been explored experimentally in THF and CH2Cl2, and computationally by PBE0-D3/def2-TZVP calculations. The end-products and some reaction intermediates have been isolated and identified by NMR spectroscopy, and their crystal structures have been determined by X-ray diffraction. The relative stabilities of the [RuCl2(CO)2(ERR′)2] isomers follow the order cct > ccc > tcc > ttt ≈ ctc (the terms c/t refer to cis/trans arrangement of the ligands in the order of Cl, CO, and ERR′). The yields were rather similar in both solvents, but the reactions were signi…

research product

The C–I・・・⁻O–N⁺ Halogen Bonds with Tetraiodoethylene and Aromatic N-oxides

The nature of C–I⋯⁻O–N⁺ interactions, first of its kind, between non-fluorinated tetraiodoethylene XB-donor and pyridine N-oxides (PyNO) are studied by single-crystal X-ray diffraction (SCXRD) and Density Functional Theory (DFT) calculations. Despite the non-fluorinated nature of the C2I4, the I⋯O halogen bond distances are similar to well-known perfluorohaloalkane/-arene donor-PyNO analogues. With C2I4, oxygens of the N-oxides adopt exclusively 2-XB-coordination in contrast to the versatile bonding modes observed with perfluorinated XB-donors. The C2I4 as the XB donor forms with PyNO’s one-dimensional chain polymer structures in which the C2I4⋯(μ-PyNO)2⋯C2I4 segments manifesting two bondin…

research product

The Se … Hal halogen bonding: Co-crystals of selenoureas with fluorinated organohalides

Abstract Synthesis and structural characterization of binary co-crystals 1–4 is reported in the present paper. Selenourea and 1,1-dimethylselenourea were used as selenium-containing halogen bond (XB) acceptors and iodopentafluorobenzene (IPFB), 1,4-diiodotetrafluorobenzene (1,4-DIFB) and 1,4-dibromotetrafluorobenzene (1,4-DBrFB) as XB donors. A comparative analysis of the similar binary co-crystals of selenourea and thiourea with a halogen donor revealed that Se … Hal halogen bonds are up to 13.12% shorter than the sum of vdW radii, while in case of S … Hal halogen bonds this value is 11.4%. Therefore, selenium tends to form stronger bonds with halogens than sulfur does. Comparisons of XB i…

research product

A Selenium-Nitrogen Chain with Selenium in Different Oxidation States

research product

CCDC 1935909: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1992632: Experimental Crystal Structure Determination

Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560

research product

CCDC 2054859: Experimental Crystal Structure Determination

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

research product

CCDC 1963046: Experimental Crystal Structure Determination

Related Article: Jackson P. Knott, Mikko M. Hanninen, J. Mikko Rautiainen, Heikki M. Tuononen, Paul G. Hayes|2017|J.Organomet.Chem.|845|135|doi:10.1016/j.jorganchem.2017.04.008

research product

CCDC 1887989: Experimental Crystal Structure Determination

Related Article: Heli Laasonen, Johanna Ikäheimonen, Mikko Suomela, J. Mikko Rautiainen, Risto S. Laitinen|2019|Molecules|24|319|doi:10.3390/molecules24020319

research product

CCDC 2090125: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 1575610: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051

research product

CCDC 2060504: Experimental Crystal Structure Determination

Related Article: Marjaana Taimisto, Merja J. Poropudas, J. Mikko Rautiainen, Raija Oilunkaniemi, Risto S. Laitinen|2023|Eur.J.Inorg.Chem.||e202200772|doi:10.1002/ejic.202200772

research product

CCDC 1935934: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1986246: Experimental Crystal Structure Determination

Related Article: Marko Rodewald, J. Mikko Rautiainen, Tobias Niksch, Helmar Görls, Raija Oilunkaniemi, Wolfgang Weigand, Risto S. Laitinen|2020|Chem.-Eur.J.|26|13806|doi:10.1002/chem.202002510

research product

CCDC 1935924: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1510717: Experimental Crystal Structure Determination

Related Article: Francis A. LeBlanc, Andreas Decken, T. Stanley Cameron, Jack Passmore, J. Mikko Rautiainen, and Thomas K. Whidden|2017|Inorg.Chem.|56|974|doi:10.1021/acs.inorgchem.6b02670

research product

CCDC 1935922: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1522803: Experimental Crystal Structure Determination

Related Article: Aino J. Karhu, Juho Jämsä, J. Mikko Rautiainen, Raija Oilunkaniemi, Tristram Chivers and Risto S. Laitinen|2017|Z.Anorg.Allg.Chem.|643|495|doi:10.1002/zaac.201700031

research product

CCDC 1584568: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, J. Mikko Rautiainen, Warren E. Piers, Heikki M. Tuononen, Chris Gendy|2018|Dalton Trans.|47|734|doi:10.1039/C7DT04350C

research product

CCDC 1966175: Experimental Crystal Structure Determination

Related Article: Kwaku Twum, J. Mikko Rautiainen, Shilin Yu, Khai-Nghi Truong, Jordan Feder, Kari Rissanen, Rakesh Puttreddy, Ngong Kodiah Beyeh|2020|Cryst.Growth Des.|20|2367|doi:10.1021/acs.cgd.9b01540

research product

CCDC 2090128: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 1557848: Experimental Crystal Structure Determination

Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G

research product

CCDC 1935930: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1935936: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1935921: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1935927: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 2061197: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 1935907: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1575611: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051

research product

CCDC 1986247: Experimental Crystal Structure Determination

Related Article: Marko Rodewald, J. Mikko Rautiainen, Tobias Niksch, Helmar Görls, Raija Oilunkaniemi, Wolfgang Weigand, Risto S. Laitinen|2020|Chem.-Eur.J.|26|13806|doi:10.1002/chem.202002510

research product

CCDC 1992633: Experimental Crystal Structure Determination

Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560

research product

CCDC 1935919: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1557843: Experimental Crystal Structure Determination

Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G

research product

CCDC 1887990: Experimental Crystal Structure Determination

Related Article: Heli Laasonen, Johanna Ikäheimonen, Mikko Suomela, J. Mikko Rautiainen, Risto S. Laitinen|2019|Molecules|24|319|doi:10.3390/molecules24020319

research product

CCDC 1935914: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1992636: Experimental Crystal Structure Determination

Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560

research product

CCDC 1966174: Experimental Crystal Structure Determination

Related Article: Kwaku Twum, J. Mikko Rautiainen, Shilin Yu, Khai-Nghi Truong, Jordan Feder, Kari Rissanen, Rakesh Puttreddy, Ngong Kodiah Beyeh|2020|Cryst.Growth Des.|20|2367|doi:10.1021/acs.cgd.9b01540

research product

CCDC 1513652: Experimental Crystal Structure Determination

Related Article: Maik Dörner, J. Mikko Rautiainen, Jörg Rust, Christian W. Lehmann, Fabian Mohr|2017|Eur.J.Inorg.Chem.||789|doi:10.1002/ejic.201601074

research product

CCDC 2061192: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 2171093: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 1557841: Experimental Crystal Structure Determination

Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G

research product

CCDC 1935926: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 2171080: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 2090122: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 1513654: Experimental Crystal Structure Determination

Related Article: Maik Dörner, J. Mikko Rautiainen, Jörg Rust, Christian W. Lehmann, Fabian Mohr|2017|Eur.J.Inorg.Chem.||789|doi:10.1002/ejic.201601074

research product

CCDC 1935915: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1513650: Experimental Crystal Structure Determination

Related Article: Maik Dörner, J. Mikko Rautiainen, Jörg Rust, Christian W. Lehmann, Fabian Mohr|2017|Eur.J.Inorg.Chem.||789|doi:10.1002/ejic.201601074

research product

CCDC 1935913: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1935929: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 2039960: Experimental Crystal Structure Determination

Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930

research product

CCDC 1935912: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1575616: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051

research product

CCDC 1575614: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051

research product

CCDC 1992635: Experimental Crystal Structure Determination

Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560

research product

CCDC 1935916: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1935920: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1935925: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 2171079: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 1513656: Experimental Crystal Structure Determination

Related Article: Maik Dörner, J. Mikko Rautiainen, Jörg Rust, Christian W. Lehmann, Fabian Mohr|2017|Eur.J.Inorg.Chem.||789|doi:10.1002/ejic.201601074

research product

CCDC 1992630: Experimental Crystal Structure Determination

Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560

research product

CCDC 2171088: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 1584567: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, J. Mikko Rautiainen, Warren E. Piers, Heikki M. Tuononen, Chris Gendy|2018|Dalton Trans.|47|734|doi:10.1039/C7DT04350C

research product

CCDC 2039961: Experimental Crystal Structure Determination

Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930

research product

CCDC 1406811: Experimental Crystal Structure Determination

Related Article: Maik Dörner, J. Mikko Rautiainen, Jörg Rust, Christian W. Lehmann, Fabian Mohr|2017|Eur.J.Inorg.Chem.||789|doi:10.1002/ejic.201601074

research product

CCDC 1513651: Experimental Crystal Structure Determination

Related Article: Maik Dörner, J. Mikko Rautiainen, Jörg Rust, Christian W. Lehmann, Fabian Mohr|2017|Eur.J.Inorg.Chem.||789|doi:10.1002/ejic.201601074

research product

CCDC 1557842: Experimental Crystal Structure Determination

Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G

research product

CCDC 1557847: Experimental Crystal Structure Determination

Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G

research product

CCDC 2060503: Experimental Crystal Structure Determination

Related Article: Marjaana Taimisto, Merja J. Poropudas, J. Mikko Rautiainen, Raija Oilunkaniemi, Risto S. Laitinen|2023|Eur.J.Inorg.Chem.||e202200772|doi:10.1002/ejic.202200772

research product

CCDC 2090119: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 2171091: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 2054860: Experimental Crystal Structure Determination

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

research product

CCDC 2171089: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 2171092: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 1935908: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 2061203: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 2171084: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 2061184: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 2061201: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 1935918: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1935935: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 2090127: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 1937170: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, Maryam Nazari, Thomas Pickl, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Gregory C. Welch, Benjamin S. Gelfand|2019|Chem.Commun.|55|11095|doi:10.1039/C9CC05103A

research product

CCDC 2061186: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 1935932: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1575615: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051

research product

CCDC 1513655: Experimental Crystal Structure Determination

Related Article: Maik Dörner, J. Mikko Rautiainen, Jörg Rust, Christian W. Lehmann, Fabian Mohr|2017|Eur.J.Inorg.Chem.||789|doi:10.1002/ejic.201601074

research product

CCDC 2090130: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 2171081: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 2171090: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 2171087: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 1935928: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1992631: Experimental Crystal Structure Determination

Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560

research product

CCDC 1575617: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051

research product

CCDC 2171086: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 1986249: Experimental Crystal Structure Determination

Related Article: Marko Rodewald, J. Mikko Rautiainen, Tobias Niksch, Helmar Görls, Raija Oilunkaniemi, Wolfgang Weigand, Risto S. Laitinen|2020|Chem.-Eur.J.|26|13806|doi:10.1002/chem.202002510

research product

CCDC 2061190: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 1935931: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1935933: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 2061198: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 2054861: Experimental Crystal Structure Determination

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

research product

CCDC 2061193: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 1992634: Experimental Crystal Structure Determination

Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560

research product

CCDC 1986248: Experimental Crystal Structure Determination

Related Article: Marko Rodewald, J. Mikko Rautiainen, Tobias Niksch, Helmar Görls, Raija Oilunkaniemi, Wolfgang Weigand, Risto S. Laitinen|2020|Chem.-Eur.J.|26|13806|doi:10.1002/chem.202002510

research product

CCDC 2061199: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 2039958: Experimental Crystal Structure Determination

Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930

research product

CCDC 2090126: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 2061194: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 2090120: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 2061185: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 1575612: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051

research product

CCDC 2061204: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 1575609: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051

research product

CCDC 1992637: Experimental Crystal Structure Determination

Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560

research product

CCDC 2061196: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 1937169: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, Maryam Nazari, Thomas Pickl, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Gregory C. Welch, Benjamin S. Gelfand|2019|Chem.Commun.|55|11095|doi:10.1039/C9CC05103A

research product

CCDC 1986251: Experimental Crystal Structure Determination

Related Article: Marko Rodewald, J. Mikko Rautiainen, Tobias Niksch, Helmar Görls, Raija Oilunkaniemi, Wolfgang Weigand, Risto S. Laitinen|2020|Chem.-Eur.J.|26|13806|doi:10.1002/chem.202002510

research product

CCDC 2090123: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 1935917: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 2061189: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 1513653: Experimental Crystal Structure Determination

Related Article: Maik Dörner, J. Mikko Rautiainen, Jörg Rust, Christian W. Lehmann, Fabian Mohr|2017|Eur.J.Inorg.Chem.||789|doi:10.1002/ejic.201601074

research product

CCDC 2039959: Experimental Crystal Structure Determination

Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930

research product

CCDC 2090124: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 1966171: Experimental Crystal Structure Determination

Related Article: Kwaku Twum, J. Mikko Rautiainen, Shilin Yu, Khai-Nghi Truong, Jordan Feder, Kari Rissanen, Rakesh Puttreddy, Ngong Kodiah Beyeh|2020|Cryst.Growth Des.|20|2367|doi:10.1021/acs.cgd.9b01540

research product

CCDC 2090129: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 2061191: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 1986252: Experimental Crystal Structure Determination

Related Article: Marko Rodewald, J. Mikko Rautiainen, Tobias Niksch, Helmar Görls, Raija Oilunkaniemi, Wolfgang Weigand, Risto S. Laitinen|2020|Chem.-Eur.J.|26|13806|doi:10.1002/chem.202002510

research product

CCDC 1575613: Experimental Crystal Structure Determination

Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051

research product

CCDC 2171082: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 1992638: Experimental Crystal Structure Determination

Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560

research product

CCDC 1887988: Experimental Crystal Structure Determination

Related Article: Heli Laasonen, Johanna Ikäheimonen, Mikko Suomela, J. Mikko Rautiainen, Risto S. Laitinen|2019|Molecules|24|319|doi:10.3390/molecules24020319

research product

CCDC 1986250: Experimental Crystal Structure Determination

Related Article: Marko Rodewald, J. Mikko Rautiainen, Tobias Niksch, Helmar Görls, Raija Oilunkaniemi, Wolfgang Weigand, Risto S. Laitinen|2020|Chem.-Eur.J.|26|13806|doi:10.1002/chem.202002510

research product

CCDC 2061195: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 2171085: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 1966173: Experimental Crystal Structure Determination

Related Article: Kwaku Twum, J. Mikko Rautiainen, Shilin Yu, Khai-Nghi Truong, Jordan Feder, Kari Rissanen, Rakesh Puttreddy, Ngong Kodiah Beyeh|2020|Cryst.Growth Des.|20|2367|doi:10.1021/acs.cgd.9b01540

research product

CCDC 2171083: Experimental Crystal Structure Determination

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

research product

CCDC 1448944: Experimental Crystal Structure Determination

Related Article: Francis A. LeBlanc, Andreas Decken, T. Stanley Cameron, Jack Passmore, J. Mikko Rautiainen, and Thomas K. Whidden|2017|Inorg.Chem.|56|974|doi:10.1021/acs.inorgchem.6b02670

research product

CCDC 1935923: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1935911: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 2054862: Experimental Crystal Structure Determination

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

research product

CCDC 2061188: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 1966172: Experimental Crystal Structure Determination

Related Article: Kwaku Twum, J. Mikko Rautiainen, Shilin Yu, Khai-Nghi Truong, Jordan Feder, Kari Rissanen, Rakesh Puttreddy, Ngong Kodiah Beyeh|2020|Cryst.Growth Des.|20|2367|doi:10.1021/acs.cgd.9b01540

research product

CCDC 1992629: Experimental Crystal Structure Determination

Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560

research product

CCDC 1935910: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 1935906: Experimental Crystal Structure Determination

Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759

research product

CCDC 2090121: Experimental Crystal Structure Determination

Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804

research product

CCDC 2061202: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 2061187: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product

CCDC 2061200: Experimental Crystal Structure Determination

Related Article: Lauri Happonen, J. Mikko Rautiainen, Arto Valkonen|2021|Cryst.Growth Des.|21|3409|doi:10.1021/acs.cgd.1c00183

research product