0000000000043117
AUTHOR
José Miguel Blasco-ibáñez
PSA-NCAM is expressed in immature, but not recently generated, neurons in the adult cat cerebral cortex layer II
Neuronal production persists during adulthood in the dentate gyrus and the olfactory bulb, where substantial numbers of immature neurons can be found. These cells can also be found in the paleocortex layer II of adult rodents, but in this case most of them have been generated during embryogenesis. Recent reports have described the presence of similar cells, with a wider distribution, in the cerebral cortex of adult cats and primates and have suggested that they may develop into interneurons. The objective of this study is to verify this hypothesis and to explore the origin of these immature neurons in adult cats. We have analyzed their distribution using immunohistochemical analysis of the …
Cells expressing markers of immature neurons in the amygdala of adult humans
The polysialylated form of the neuronal cell adhesion molecule (PSA-NCAM) is expressed by immature neurons in the amygdala of adult mammals, including non-human primates. In a recent report we have also described the presence of PSA-NCAM-expressing cells in the amygdala of adult humans. Although many of these cells have been classified as mature interneurons, some of them lacked mature neuronal markers, suggesting the presence of immature neurons. We have studied, using immunohistochemistry, the existence and distribution of these immature neurons using post mortem material. We have also analysed the presence of proliferating cells and the association between immature neurons and specialise…
Expression of PSA-NCAM and synaptic proteins in the amygdala of psychiatric disorder patients.
Neuroimaging has revealed structural abnormalities in the amygdala of different psychiatric disorders. The polysialylated neural cell adhesion molecule (PSA-NCAM), a molecule related to neuronal structural plasticity, which expression is altered in schizophrenia, major depression and in animal models of these disorders, may participate in these changes. However, PSA-NCAM has not been studied in the human amygdala. To know whether its expression and that of presynaptic markers, was affected in psychiatric disorders, we have analyzed post-mortem sections from the Stanley Neuropathology Consortium, which includes controls, schizophrenia, bipolar and major depression patients. PSA-NCAM was expr…
Synaptic connectivity of serotonergic axons in the olfactory glomeruli of the rat olfactory bulb.
Although the major mode of transmission for serotonin in the brain is volume transmission, previous anatomical studies have demonstrated that serotonergic axons do form synaptic contacts. The olfactory glomeruli of the olfactory bulb of mammals receive a strong serotonergic innervation from the dorsal and medial raphe nuclei. In the present report, we investigate the synaptic connectivity of these serotonergic axons in the glomerular neuropil of the rat olfactory bulb. Our study shows that serotonergic axons form asymmetrical synaptic contacts on dendrites within the glomerular neuropil. Analyzing the neurochemical nature of the synaptic targets, we have found that 55% of the synapses were …
Zinc chelation during non-lesioning overexcitation results in neuronal death in the mouse hippocampus
In the hippocampus, chelatable zinc is accumulated in vesicles of glutamatergic presynaptic terminals, abounding specially in the mossy fibers, from where it is released with activity and can exert a powerful inhibitory action upon N-methyl-D-aspartate receptors. Zinc is therefore in a strategic situation to control overexcitation at the zinc-rich excitatory synapses, and consequently zinc removal during high activity might result in excitotoxic neuronal damage. We analyzed the effect of zinc chelation with sodium dietyldithiocarbamate under overexcitation conditions induced by non-lesioning doses of kainic acid in the mouse hippocampus, to get insight into the role of zinc under overexcita…
Characterization of somatostatin- and cholecystokinin-immunoreactive periglomerular cells in the rat olfactory bulb.
Periglomerular cells (PG) are interneurons of the olfactory bulb (OB) that modulate the first synaptic relay of the olfactory information from the olfactory nerve to the dendrites of the bulbar principal cells. Previous investigations have pointed to the heterogeneity of these interneurons and have demonstrated the presence of two different types of PG. In the rat OB, type 1 PG receive synaptic contacts from the olfactory axons and are γ-aminobutyric acid (GABA)-ergic, whereas type 2 PG do not receive synaptic contacts from the olfactory axons and are GABA immunonegative. In this study, we analyze and characterize neurochemically a group of PG that has not been previously classified either …
Calretinin/PSA-NCAM immunoreactive granule cells after hippocampal damage produced by kainic acid and DEDTC treatment in mouse.
There is a dramatic increase in the number of lightly immunoreactive calretinin cells in the granular layer of the dentate gyrus of the mouse hippocampus 1 day after excitotoxic injury using kainic acid combined with the zinc chelator diethyldithiocarbamate. At 7 days after treatment, these cells are strongly immunoreactive for calretinin and for the polysialated form of the glycoprotein neural cell adhesion molecule (PSA-NCAM). The reexpression of calretinin and PSA-NCAM after treatment corresponds well with the loss of input from the damaged hilar mossy cells. These cells could be considered immature granule cells since they are immunoreactive to markers for immature cells such as PSA-NCA…
Subcellular localization of m2 muscarinic receptors in GABAergic interneurons of the olfactory bulb
We analysed the ultrastructural distribution of the m2 muscarinic receptor (m2R) in the rat olfactory bulb (OB) using immunohistochemical techniques and light and electron microscopy. m2R was differentially distributed within the cellular compartments of gamma-aminobutyric acid (GABA)ergic bulbar interneurons. It is located in the gemmules of granule cells and in the synaptic loci of the interneurons of the external plexiform layer, suggesting that m2R activation could modulate the release of GABA from these interneurons onto principal cells by a presynaptic mechanism. By contrast, the receptor appears in the somata and dendritic trunks of second-order short-axon interneurons located in the…
Non-granule PSA-NCAM immunoreactive neurons in the rat hippocampus
The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) continues to be expressed in the adult hippocampus, mainly in a subset of neurons located in the innermost portion of the granule cell layer. PSA-NCAM immunoreactive neurons have also been described outside this layer in humans, where they are severely reduced in schizophrenic brains. Given this important clinical implication, we were interested in finding whether similar neurons existed in the adult rat hippocampus and to characterize their distribution, morphology and phenotype. PSA-NCAM immunocytochemistry reveals labeled neurons in the subiculum, fimbria, alveus, hilus, and stratum oriens, lucidum and radiatum of CA…
Astrocytes of the murine model for Down Syndrome Ts65Dn display reduced intracellular ionic zinc.
Zinc is an essential trace element that is critical for a large number of structural proteins, enzymatic processes and transcription factors. In the brain, zinc ions are involved in synaptic transmission. The homeostasis of zinc is crucial for cell survival and function, and cells have developed a wide variety of systems to control zinc concentration. Alterations in free zinc concentration have been related with brain dysfunction. Down Syndrome individuals present alterations in free zinc concentration and in some of the proteins related with zinc homeostasis. We have analyzed the amount of free zinc and the zinc chelating protein metallothionein 3 in the astrocytes using primary cultures o…
Cranial Pair I: The Olfactory Nerve
The olfactory nerve constitutes the first cranial pair. Compared with other cranial nerves, it depicts some atypical features. First, the olfactory nerve does not form a unique bundle. The olfactory axons join other axons and form several small bundles or fascicles: the fila olfactoria. These fascicles leave the nasal cavity, pass through the lamina cribrosa of the ethmoid bone and enter the brain. The whole of these fascicles is what is known as the olfactory nerve. Second, the olfactory sensory neurons, whose axons integrate the olfactory nerve, connect the nasal cavity and the brain without any relay. Third, the olfactory nerve is composed by unmyelinated axons. Fourth, the olfactory ner…
Synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey.
The olfactory bulb (OB) of mammals receives cholinergic afferents from the horizontal limb of the diagonal band of Broca (HDB). At present, the synaptic connectivity of the cholinergic axons on the circuits of the OB has only been investigated in the rat. In this report, we analyze the synaptic connectivity of the cholinergic axons in the OB of the cynomolgus monkey (Macaca fascicularis). Our aim is to investigate whether the cholinergic innervation of the bulbar circuits is phylogenetically conserved between macrosmatic and microsmatic mammals. Our results demonstrate that the cholinergic axons form synaptic contacts on interneurons. In the glomerular layer, their main targets are the peri…
Polysialic acid is required for dopamine D2 receptor-mediated plasticity involving inhibitory circuits of the rat medial prefrontal cortex.
Decreased expression of dopamine D2 receptors (D2R), dysfunction of inhibitory neurotransmission and impairments in the structure and connectivity of neurons in the medial prefrontal cortex (mPFC) are involved in the pathogenesis of schizophrenia and major depression, but the relationship between these changes remains unclear. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, may serve as a link. This molecule is expressed in cortical interneurons and dopamine, via D2R, modulates its expression in parallel to that of proteins related to synapses and inhibitory neurotransmission, suggesting that D2R-targeted antipsychotics/antidepressants…
Dopamine acting through D2 receptors modulates the expression of PSA-NCAM, a molecule related to neuronal structural plasticity, in the medial prefrontal cortex of adult rats
A "neuroplastic" hypothesis proposes that changes in neuronal structural plasticity may underlie the aetiology of depression and the action of antidepressants. The medial prefrontal cortex (mPFC) is affected by this disorder and shows an intense expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-associated molecule, which is expressed mainly in interneurons. The monoamines serotonin, dopamine and noradrenaline are the principal targets of antidepressant action. Pharmacological manipulation of serotonin levels regulates synaptophysin and PSA-NCAM expression in the adult mPFC. However, the involvement of structural plasticity on the antidepress…
Early increased density of cyclooxygenase-2 (COX-2) immunoreactive neurons in Down syndrome
iNeuroinflammation is one of the hallmarks of Alzheimer's disease. One of the enzymes involved in neuroinflammation, even in early stages of the disease, is COX-2, an inducible cyclooxygenase responsible for the generation of eicosanoids and for the generation of free radicals. Individuals with Down syndrome develop Alzheimer's disease early in life. Previous studies pointed to the possible overexpression of COX-2 and correlated it to brain regions affected by the disease. We analysed the COX-2 expression levels in individuals with Down syndrome and in young, adult and old mice of the Ts65Dn mouse model for Down syndrome. We have observed an overexpression of COX-2 in both, Down syndrome in…
Vasoactive intestinal polypeptide-containing elements in the olfactory bulb of the hedgehog (Erinaceus europaeus).
Abstract The distribution of vasoactive intestinal polypeptide (VIP)-immunopositive elements was analyzed in the olfactory bulb (OB) of the Western European hedgehog (Erinaceus europaeus) under light and electron microscopy. The immunoreactivity appeared in an abundant population of periglomerular cells of the glomerular layer, in interneurons of the external plexiform layer, and in a restricted group of deep short-axon cells of the internal plexiform layer, the granule cell layer and the white matter. In the glomerular layer, VIP-containing periglomerular cells constituted a population of non-GABAergic neurons and did not receive synapses from olfactory axons. In the EPL, VIP-immunoreactiv…
Migrating neuroblasts of the rostral migratory stream are putative targets for the action of nitric oxide
It has been demonstrated that the gaseous messenger nitric oxide influences cell proliferation and cell migration, and therefore affects adult neurogenesis in mammals. Here, we investigated the putative targets for this action in the rostral migratory stream of the rat. We used immunocytochemical detection of the beta1 subunit of the enzyme soluble guanylyl cyclase, which can be activated by nitric oxide. Our results under light and electron microscopy demonstrated that the migrating neuroblasts (type A cells) were beta1-immunopositive. The astrocytes (type B cells), immature precursors (type C cells) and ependymal cells (type E cells) were beta1-immunonegative. The neurochemical characteri…
Soluble guanylyl cyclase appears in a specific subset of periglomerular cells in the olfactory bulb
In the brain, nitric oxide acts as an atypical messenger in cellular nonsynaptic transmission. In the olfactory bulb, this gas is produced at the level of the olfactory glomeruli by a subpopulation of periglomerular cells that participates in the first synaptic relay of the olfactory information between the olfactory nerve and the dendritic tufts of principal cells. It has been proposed that nitric oxide modulates intraglomerular synaptic integration of sensory inputs, but its specific role in the glomerular circuitry remains to be understood. In this article, we demonstrate that, in the glomerular circuits, a specific subset of periglomerular cells, most of them expressing the calcium bind…
Phenotypic characterization of MCP-1 expressing neurons in the rat cerebral cortex.
Chemokines are small, secreted molecules that mediate inflammatory reactions. Neurons and astrocytes constitutively express chemokines implicated in the process of neuroinflammation associated with neurodegenerative diseases. The monocyte chemoattractant protein-1 (MCP-1) has been widely related to this process. However, the constitutive expression of this molecule by neurons has not been elucidated so far. In this study, we set out to characterize the neurochemical phenotype of MCP-1-expressing neurons in the rat neocortex to infer its role in basal conditions. We observed the presence of two populations of neurons expressing MCP-1: One population of cells with weak expression of MCP-1 cor…
Chronic fluoxetine treatment in middle-aged rats induces changes in the expression of plasticity-related molecules and in neurogenesis
Abstract Background Antidepressants promote neuronal structural plasticity in young-adult rodents, but little is known of their effects on older animals. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these structural changes through its anti-adhesive properties. PSA-NCAM is expressed in immature neurons and in a subpopulation of mature interneurons and its expression is modulated by antidepressants in the telencephalon of young-adult rodents. Results We have analyzed the effects of 14 days of fluoxetine treatment on the density of puncta expressing PSA-NCAM and different presynaptic markers in the medial prefrontal cortex, hippocampus and amygdala of mi…
Expression of the transcription factor Pax6 in the adult rat dentate gyrus
The transcription factor Pax 6 is expressed in precursor cells during embryonic CNS development, and it plays an important role in the regulation of cell proliferation and neuronal fate determination. Pax 6-expressing cells are also present in the adult hippocampal dentate gyrus and subventricular zone/rostral migratory stream, regions in which neuronal precursors exist during adult life. In the adult dentate gyrus, precursor cells are located in the innermost portion of the granule cell layer, and Pax 6-expressing nuclei are most abundant in this region. To examine the putative role of Pax 6 in adult hippocampal neurogenesis, we have studied the proliferative activity, distribution, and ph…
Piriform cortex alterations in the Ts65Dn model for down syndrome
The piriform cortex is involved in olfactory information processing, that is altered in Down Syndrome. Moreover, piriform cortex has a crucial involvement in epilepsy generation and is one of the first regions affected in Alzheimer's Disease, both maladies being prevalent among Down Syndrome individuals. In this work, we studied the alterations in neuronal morphology, synaptology and structural plasticity in the piriform cortex of the Ts65Dn mouse model, which is the most used model for the study of this syndrome and mimics some of their alterations. We have observed that Ts65Dn piriform cortex displays: a reduction in dendritic arborisation, a higher density of inhibitory synapses (GAD67),…
Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients.
Alterations in the structure and physiology of the prefrontal cortex (PFC) have been found in different psychiatric disorders and some of them involve inhibitory networks, especially in schizophrenia and major depression. Changes in the structure of these networks may be mediated by the polysialylated neural cell adhesion molecule (PSA-NCAM), a molecule related to neuronal structural plasticity, expressed in the PFC exclusively by interneurons. Different studies have found that PSA-NCAM expression in the hippocampus and the amygdala is altered in schizophrenia, major depression and animal models of these disorders, in parallel to changes in the expression of molecules related to inhibitory …
Nitric oxide synthase containing periglomerular cells are GABAergic in the rat olfactory bulb.
In the olfactory glomeruli of the rat olfactory bulb, there is a population of periglomerular cells (PG) that contains the neuronal isoform of the nitric oxide synthase (nNOS). To date, these PG have not been characterized neurochemically and it has not been determined whether they are type 1 (GABAergic PG that receive synaptic contacts from the olfactory axons) or type 2 PG (non-GABAergic PG that do not receive synapses from the olfactory axons). Combining pre-embedding NADPH-diaphorase histochemistry and post-embedding immunoperoxidase detection of GABA, we demonstrate that nNOS-containing PG are GABAergic and therefore, belong to the type 1 PG. The possible actions of nitric oxide in the…
Alterations in reelin and reelin receptors in Down syndrome.
Reelin is an extracellular matrix glycoprotein that modulates synaptic function and plasticity, with a crucial role in neuronal migration. Changes in the expression of this protein have been reported in neurodegenerative diseases, such as Alzheimer's disease (AD). This molecule is produced by Cajal-Retzius neurons during development and by inhibitory neurons in the adult nervous system. Individuals with Down syndrome (DS) present an early development of AD; therefore, we analyzed the alterations in this molecule and its receptors in the murine model for DS Ts65Dn as well as in human with DS. We performed immunofluorescence analysis for reelin and its receptors very-low-density lipoprotein r…
Neurocalcin-immunoreactive cells in the rat hippocampus are GABAergic interneurons
Neurocalcin (NC) is a recently described calcium-binding protein isolated and characterized from bovine brain. NC belongs to the neural calcium-sensor proteins defined by the photoreceptor cell-specific protein recoverin that have been proposed to be involved in the regulation of calcium-dependent phosphorylation in signal transduction pathways. We analyzed the distribution and morphology of the NC-immunoreactive (IR) neurons in the rat dorsal hippocampus and the coexistence of NC with GABA and different neurochemical markers which label perisomatic inhibitory cells [parvalbumin (PV) and cholecystokinin (CCK)], mid-proximal dendritic inhibitory cells [calbindin D28k (CB)], distal dendritic …
VIP-containing deep short-axon cells of the olfactory bulb innervate interneurons different from granule cells
This study investigates the targets of the population of vasoactive intestinal polypeptide (VIP)-containing deep short-axon cells of the rat olfactory bulb (OB), combining single- and double-immunocytochemical approaches under light and electron microscopy. It has been assumed that deep short-axon cells innervate granule cells in the mammalian OB, but their synaptic connectivity has not been demonstrated to date. Our results indicate that, instead of the accepted scheme of the bulbar circuitry, VIP-containing deep short-axon cells are gamma-aminobutyric acid (GABA)ergic interneurons specialized in the selective innervation of other GABAergic deep short-axon cells. Their axons contact with t…
Chronic Fluoxetine Treatment Increases the Expression of PSA-NCAM in the Medial Prefrontal Cortex
Recent hypotheses suggest that changes in neuronal structure and connectivity may underlie the etiology of depression. The medial prefrontal cortex (mPFC) is affected by depression and shows neuronal remodeling during adulthood. This plasticity may be mediated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), which is intensely expressed in the adult mPFC. As the expression of PSA-NCAM is increased by serotonin in other cerebral regions, antidepressants acting on serotonin reuptake may influence PSA-NCAM expression and thus counteract the effects of depression by modulating neuronal structural plasticity. Using immunohistochemistry, we have studied the relationship…
The dendritic spines of interneurons are dynamic structures influenced by PSA-NCAM expression.
Excitatory neurons undergo dendritic spine remodeling in response to different stimuli. However, there is scarce information about this type of plasticity in interneurons. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate to mediate this plasticity as it participates in neuronal remodeling and is expressed by some mature cortical interneurons, which have reduced dendritic arborization, spine density, and synaptic input. To study the connectivity of the dendritic spines of interneurons and the influence of PSA-NCAM on their dynamics, we have analyzed these structures in a subpopulation of fluorescent spiny interneurons in the hippocampus of glutamic …
Altered expression of neuropeptides in the primary somatosensory cortex of the Down syndrome model Ts65Dn.
Down syndrome is the most common genetic disorder associated with mental retardation. Subjects and mice models for Down syndrome (such as Ts65Dn) show defects in the formation of neuronal networks in both the hippocampus and the cerebral cortex. The principal neurons display alterations in the morphology, density and distribution of dendritic spines in the cortex as well as in the hippocampus. Several evidences point to the possibility that the atrophy observed in principal neurons could be mediated by changes in their inhibitory inputs and, in fact, an imbalance between excitation and inhibition has been observed in Ts65Dn mice in these regions, which are crucial for learning and informati…
The Polysialylated Form of the Neural Cell Adhesion Molecule (PSA-NCAM) Is Expressed in a Subpopulation of Mature Cortical Interneurons Characterized by Reduced Structural Features and Connectivity
Principal neurons in the adult cerebral cortex undergo synaptic, dendritic, and spine remodeling in response to different stimuli, and several reports have demonstrated that the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) participates in these plastic processes. However, there is only limited information on the expression of this molecule on interneurons and on its role in the structural plasticity of these cells. We have found that PSA-NCAM is expressed in mature interneurons widely distributed in all the extension of the cerebral cortex and have excluded the expression of this molecule in most principal cells. Although PSA-NCAM expression is generally considered a …
Differential evolution of PSA-NCAM expression during aging of the rat telencephalon
Changes in the ability of neuronal networks to undergo structural remodeling may be involved in the age-associated cognitive decline. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) declines dramatically during postnatal development, but persists in several regions of the young-adult rat telencephalon, where it participates, through its anti-adhesive properties, in neuronal structural plasticity. However, PSA-NCAM expression during aging has only been studied in the dentate gyrus and the piriform cortex layer II, where it is strongly downregulated in adult (middle-aged) individuals. Using immunohistochemistry, we have observed that in most of the telencephalic areas …
Distribution of D2 dopamine receptor in the olfactory glomeruli of the rat olfactory bulb
Dopamine plays key roles in the processing of the olfactory information that takes place in the olfactory glomeruli. Previous studies using autoradiography demonstrate that, at the glomerular level, these actions are mainly mediated via activation of D2 dopamine receptors. Moreover, it has been suggested that D2 receptors could be present in the olfactory nerve, where they might modulate the entrance of olfactory input into the brain. Nevertheless, the precise subcellular localization of D2 receptors in the glomerular neuropil has not been investigated. In this report, we show the subcellular distribution of D2 receptors in the glomerular circuits of Wistar rats, using pre-embedding immunog…
A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood.
New neurons in the adult brain transiently express molecules related to neuronal development, such as the polysialylated form of neural cell adhesion molecule, or doublecortin (DCX). These molecules are also expressed by a cell population in the rat paleocortex layer II, whose origin, phenotype, and function are not clearly understood. We have classified most of these cells as a new cell type termed tangled cell. Some cells with the morphology of semilunar-pyramidal transitional neurons were also found among this population, as well as some scarce cells resembling semilunar, pyramidal. and fusiform neurons. We have found that none of these cells in layer II express markers of glial cells, m…
Nuclear fos domains in transcriptionally activated supraoptic nucleus neurons
This study has analysed by light and electron microscopy immunolocalization the nuclear pattern of distribution of Fos-related proteins in supraotic neurons. Two experimental models of transcriptional activation have been used: sustained, global transcriptional activation, at relatively near physiological conditions, by six days of chronic intermittent salt loading; and superinduction of c-fos gene by this salt loading regime plus cycloheximide treatment for 4 h. In the first condition, the ultrastructural analysis showed a distribution of Fos-like immunoreactivity on the reticular network of dispersed chromatin that extends between the nucleolar surface and the nuclear envelope, whereas th…
Alterations of perineuronal nets in the dorsolateral prefrontal cortex of neuropsychiatric patients
Abstract Background Alterations in the structure and physiology of interneurons in the prefrontal cortex (PFC) are important factors in the etiopathology of different psychiatric disorders. Among the interneuronal subpopulations, parvalbumin (PV) expressing cells appear to be specially affected. Interestingly, during development and adulthood the connectivity of these interneurons is regulated by the presence of perineuronal nets (PNNs), specialized regions of the extracellular matrix, which are frequently surrounding PV expressing neurons. Previous reports have found anomalies in the density of PNNs in the PFC of schizophrenic patients. However, although some studies have described alterat…
Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mPFC of Adult Rats.
Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal n…
Parvalbumin-containing interneurons do not innervate granule cells in the olfactory bulb
Combining pre-embedding parvalbumin immunostaining and post-embedding immunogold detection of GABA in the olfactory bulb, we investigated whether the parvalbumin-containing GABAergic interneurons of the external plexiform layer exclusively innervate principal cells, or whether they also establish inhibitory synapses upon GABAergic local neurons such as granule cells. Our results demonstrate that the parvalbumin-containing cells do not contact GABAergic interneurons in the neuropil of the external plexiform layer. On the contrary, their postsynaptic elements were always non-GABAergic principal cells. Although classically it has been accepted that the interneurons of the external plexiform la…
Enkephalin-containing interneurons are specialized to innervate other interneurons in the hippocampal CA1 region of the rat and guinea-pig
Enkephalins are known to have a profound effect on hippocampal inhibition, but the possible endogenous source of these neuropeptides, and their relationship to inhibitory interneurons is still to be identified. In the present study we analysed the morphological characteristics of met-enkephalin-immunoreactive cells in the CA1 region of the rat and guinea-pig hippocampus, their coexistence with other neuronal markers and their target selectivity at the light and electron microscopic levels. Several interneurons in all subfields of the hippocampus were found to be immunoreactive for met-enkephalin. In the guinea-pig, fibres arising from immunoreactive interneurons were seen to form a plexus …
Semilunar Granule Cells Are the Primary Source of the Perisomatic Excitatory Innervation onto Parvalbumin-Expressing Interneurons in the Dentate Gyrus
AbstractWe analyzed the origin and relevance of the perisomatic excitatory inputs on the parvalbumin interneurons of the granule cell layer in mouse. Confocal analysis of the glutamatergic innervation showed that it represents ∼50% of the perisomatic synapses that parvalbumin cells receive. This excitatory input may originate from granule cell collaterals, the mossy cells, or even supramammillary nucleus. First, we assessed the input from the mossy cells on parvalbumin interneurons. Axon terminals of mossy cells were visualized by their calretinin content. Using multicolor confocal microscopy, we observed that less than 10% of perisomatic excitatory innervation of parvalbumin cells could or…
PSA-NCAM expression in the human prefrontal cortex.
The prefrontal cortex (PFC) of adult rodents is capable of undergoing neuronal remodeling and neuroimaging studies in humans have revealed that the structure of this region also appears affected in different psychiatric disorders. However, the cellular mechanisms underlying this plasticity are still unclear. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these structural changes through its anti-adhesive properties. PSA-NCAM participates in neurite outgrowth and synaptogenesis and changes in its expression occur parallel to neuronal remodeling in certain regions of the adult brain. PSA-NCAM is expressed in the hippocampus and temporal cortex of adult hum…