0000000000049419
AUTHOR
D. Valdaitsev
Strain-induced magnetic anisotropies in Co films on Mo(110)
Coexisting electron emission mechanisms in small metal particles observed in fs-laser excited PEEM
Abstract Silver cluster films deposited on Si(1 1 1) were investigated by spectroscopic photoelectron microscopy using fs-laser excitation tuneable between hν = 1.45–1.65 eV and 2.9–3.3 eV. With increasing coverage the films grown as stepped wedges first exhibit clusters of few nanometers diameter with narrow size distributions that later agglomerate forming larger islands up to about 100 nm diameter. The cluster films have been characterized by SEM, AFM and HR-TEM. In the 3.1 eV range the small clusters emit more effectively and the dependence of electron yield on laser power follows a quadratic power law. Microspectroscopy reveals that the Fermi level onset is sharp(
Magnetization dynamics in microscopic spin-valve elements: Shortcomings of the macrospin picture
We have studied ultrafast magnetodynamics in micropatterned spin-valve structures using time-resolved x-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism. Exciting the system with ultrafast field pulses of $250\phantom{\rule{0.3em}{0ex}}\mathrm{ps}$ width, we find the dynamic response of the free layer to fall into two distinctly different contributions. On the one hand, it exhibits localized spin wave modes that strongly depend on the shape of the micropattern. A field pulse applied perpendicular to the exchange bias field along the diagonal of a square pattern leads to the excitation of a standing spin wave mode with two nodes along the field direction.…
Dopant Contrast in Semiconductors as Interpretation Challenge at Imaging by Electrons
Mechanisms responsible for the contrast between differently doped areas in semiconductors, which is observed in electron micrographs, is discussed as regards the key factors determining the sign and magnitude of the contrast. Experimental data obtained by means of the scanning electron microscope (SEM), scanning low energy electron microscope and photoelectron emission microscope are reviewed together with hints following from them for compilation of a model of the contrast mechanism.
Element-specific magnetic moments from core-absorption magnetic circular dichroism of the doped Heusler alloyCo2Cr0.6Fe0.4Al
The magnetic circular dichroism (MCD) of core-level absorption (x-ray absorption spectroscopy, XAS) spectra in the soft x-ray region has been measured for the ferromagnetic Heusler alloy ${\mathrm{Co}}_{2}{\mathrm{Cr}}_{0.6}{\mathrm{Fe}}_{0.4}\mathrm{Al}$ at the Co, Fe, and Cr ${L}_{II,III}$ edges. The comparison of XAS spectra before and after in situ cleaning of polished surfaces revealed a pronounced selective oxidation of Cr in air. For clean surfaces we observed a MCD for all three elements with Fe showing the largest moment per atom. The MCD can be explained by the density of states of the $3d$ unoccupied states, predicted by linear muffin-tin orbital atomic sphere approximation. For …
A new approach for actinic defect inspection of EUVL multilayer mask blanks: Standing wave photoemission electron microscopy
Extreme ultraviolet lithography (EUVL) at 13.5 nm is the next generation lithography technique capable of printing sub-50 nm structures. With decreasing feature sizes to be printed, the requirements for the lithography mask also become more stringent in terms of defect sizes and densities that are still acceptable and the development of lithography optics has to go along with the development of new mask defect inspection techniques that are fast and offer high resolution (preferable in the range of the minimum feature size) at the same time. We report on the development and experimental results of a new 'at wavelength' full-field imaging technique for defect inspection of multilayer mask bl…
Photoemission time-of-flight spectromicroscopy of Ag nanoparticle films on Si(111)
Abstract Time-of-flight photoemission electron microscopy was used to measure spatially resolved energy distribution curves of electrons emitted from Ag nanoparticle films with different mass thicknesses. Two-photon photoemission (2PPE) was induced by femtosecond laser pulse excitation with 3.1 eV photon energy and 200 fs pulse width. Regions of Ag nanoparticles with different average sizes and one region with a continuous 100 nm thick Ag film were deposited as a stepped wedge on a Si(1 1 1) substrate. Upon laser excitation the nanoparticle films exhibit a very high electron emission yield in the images, whereas the uncovered Si surface and the continuous Ag film are dark. The time-of-fligh…
Investigation of a novel material for magnetoelectronics: Co2Cr0.6Fe0.4Al
Heusler compounds are promising candidates for future spintronics device applications. The electronic and magnetic properties of Co2Cr0.6Fe0.4Al, an electron-doped derivative of Co2CrAl, are investigated using circularly polarized synchrotron radiation and photoemission electron microscopy (PEEM). Element specific imaging reveals needle shaped Cr rich phases in a homogeneous bulk of the Heusler compound. The ferromagnetic domain structure is investigated on an element-resolved basis using x-ray magnetic circular dichroism (XMCD) contrast in PEEM. The structure is characterized by micrometre-size domains with a superimposed fine ripple structure; the lateral resolution in these images is abo…
Electrical and emission properties of current-carrying silver nanocluster films investigated by emission electron microscopy
Phase defect inspection of multilayer masks for 13.5 nm optical lithography using PEEM in a standing wave mode
We report on recent developments of an "at wavelength" full-field imaging technique for defect inspection of multilayer mask blanks for extreme ultraviolet lithography (EUVL). Our approach uses photoemission electron microscopy (PEEM) in a near normal incidence mode at 13.5 nut wavelength to image the photoemission induced by the EUV wave field on the multilayer blank surface. We analyze buried defects on Mo/Si multilayer samples down to a lateral size of 50 nm and report on first, results obtained from a six inches mask blank prototype as prerequisite for industrial usage. (c) 2007 Elsevier B.V. All rights reserved.
Emission Electron Microscopy of Nanoparticles in Strong fs Laser Fields
High-pass energy-filtered photoemission electron microscopy imaging of dopants in silicon.
Differently doped areas in silicon can show strong electron-optical contrast in dependence on the dopant concentration and surface conditions. Photoemission electron microscopy is a powerful surface-sensitive technique suitable for fast imaging of doping-induced contrast in semiconductors. We report on the observation of Si (100) samples with n- and p-type doped patterns (with the dopant concentration varied from 10(16) to 10(19) cm(-3)) on a p- and n-type substrate (doped to 10(15) cm(-3)), respectively. A high-pass energy filter of the entire image enabled us to obtain spectroscopic information, i.e. quantified photo threshold and related photoyield differences depending on the doping lev…