0000000000049578
AUTHOR
Pablo Alborés
A T‐Shaped μ 3 ‐Oxido Trinuclear Iron Cluster with High Easy‐Plane Anisotropy: Structural and Magnetic Characterization
The synthesis, crystal structure and magnetochemical characterization of a new μ-oxido trinuclear iron cluster (oldnomenclature: μ-oxo trinuclear iron cluster), [Fe3(μ3-O)(μ2-CH3O)2(μ2-CH3COO)2(phen)2Cl3], is reported. The reaction of hydrated FeCl3 with sodium acetate and 1,10-phenanthroline in a mixture of methanol and acetonitrile afforded crystals suitable for X-ray crystallographic determination. The new compound crystallizes in the tetragonal I41/a space group (a = b = 13.6322 A, c = 37.3538 A, Z = 8, V = 6941.7 A3). The core of the complex is an isosceles triangle bridged by a μ3-O ion with a rare T-shaped geometry. The chloride ions are bound terminally, and the phenanthroline ligan…
Magnetic Study of a Pentanuclear {Co 2 III Co 3 II } Cluster with a Bent {Co II 3 } Motif
We have synthesised and structurally characterised a new pentanuclear mixed-valent cobalt cluster of formula [CoII3CoIII2(OH)2(piv)6(L)2(H2O)4] (piv = trimethylacetate, H2L = salicylideneanthranillic acid) from reaction of a dinuclear cobalt pivalate precursor with a Schiff base type ligand under mild reaction conditions. The core structure can be conveniently described as two fused Co3–μ3–OH triangles with a strict unique sharing vertex point. A complete picture of the magnetic behaviour of this compound is presented. Through combined use of susceptibility, magnetisation, and EPR data as well as broken-symmetry DFT calculations, we have supported the magnetic data that show weak and anisot…
{CoIII2DyIII2} single molecule magnet with two resolved thermal activated magnetization relaxation pathways at zero field
The new complex [CoIII2DyIII 2(OMe)2(teaH)2(Piv)6] in the {CoIII2DyIII2} family, shows two well resolved thermal activated magnetization relaxation pathways under AC experiments in zero DC field. Fitted crystal field parameters suggest that the origin of these two pathways relies on two different excited mJ sub-levels. Fil: Funes, Víctor Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina …
Titelbild: Direct CH Metalation with Chromium(II) and Iron(II): Transition-Metal Host / Benzenediide Guest Magnetic Inverse-Crown Complexes (Angew. Chem. 18/2009)
Chrom und Eisen als die neuesten Erganzungen des Konzepts der alkalimetallvermittelten Metallierung stellen J. Klett, R. E. Mulvey et al. in ihrer Zuschrift auf S. 3367 ff. vor. Das elektropositivere Natrium ist wesentlich fur die Reaktion, doch das weniger elektropositive Chrom oder Eisen ist es, das Benzol tatsachlich deprotoniert. Diese neuartige Reaktivitat kann mit einem Schachspiel verglichen werden, bei dem die Konigin (Na) dem Konig Schach bietet und der Springer (Cr, Fe) Matt setzt.
Rational design of covalently bridged [FeIII2MIIO] clusters
We are reporting the first supramolecular dimeric units of basic carboxylates. The neutral [FeIII 2MIIO] motif for different 3d M metals is covalently bound through 2,2′-bipyrimidine. We have structurally characterized the hexanuclear clusters and the related trinuclear building blocks. Their magnetic properties have been fully analyzed and DFT calculations have been performed as a supplementary tool. All results evidence a weak antiferromagnetic interaction through the bpym bridge between isolated spin ground states (in some examples) arising from intra-Fe 2MO core exchange couplings. Fil: Alborés, Pablo. Johannes Gutenberg Universitat Mainz; Alemania. Consejo Nacional de Investigaciones C…
One dimensional Mn(III) Schiff-base complex organization through very strong symmetrical H-bond interaction
Abstract We are reporting the structural and magnetic characterization of a Mn(III) mononuclear complex based on a Schiff-base ligand with carboxylate pendant arm. Very strong symmetric H-interaction drives a one dimensional organization of this complex, densely packed through C–H⋯π further interactions. Low temperature magnetic behaviour appears governed by local ion zero field splitting obscuring any possible weak exchange interaction through the symmetric H-bond pathway.
Synthesis, structural characterization and magnetic behaviour of a family of [CoIII2LnIII2] butterfly compounds
We have successfully prepared and structurally characterized a family of butterfly-like [Co2 IIILn2 III] complexes where all magnetic properties are due to the Ln(iii) ions. The complexes with Ln = Tb(1), Dy(2), Ho(3), Er(4) and Yb(5) are iso-structural. An exception is the complex with Ln = Gd(6) which strings in a one dimensional chain. The structural similarity together with the high tendency of the crystallites to align under an applied magnetic field allowed an overall DC magnetic data treatment to extract phenomenological crystal field parameters and hence to determine the ground state multiplet energy level splitting. The Dy(iii) member is the only one showing slow relaxation of magn…
Exploring the Slow Relaxation of the Magnetization in CoIII -Decorated {DyIII 2 } Units
We have prepared and structurally characterized a new member of the butterfly-like {CoIII 2DyIII 2} single-molecule magnets (SMMs) through further CoIIIdecoration, with the formula [CoIII 4DyIII 2(OH)2(teaH)2(tea)2(Piv)6] (teaH3=triethanolamine; Piv=trimethylacetate or pivalate). Direct current (DC) susceptibility and magnetization measurements were performed allowing the extraction of possible crystal-field parameters. A simple electrostatic modeling shows reasonable agreement with experimental data. Alternating current (AC) susceptibility measurements under a zero DC field and under small applied fields were performed at different frequencies (i.e., 10–1500 Hz) and at low temperatures (i.…
Counter-complementarity control of the weak exchange interaction in a bent {Ni(ii)3 complex with a μ-phenoxide-μ-carboxylate double bridge
We have prepared and structurally characterized a novel {Ni3} bent complex bearing a double μ-phenoxide-μ-carboxylate bridge. Both terminal Ni(ii) sites are symmetry related, offering a simplified exchange interaction scheme. DC magnetic data is consistent with a weak antiferromagnetic interaction between the central and terminal Ni(ii) ions. As expected for a Ni(ii) system, local zero-field splitting is observed, which can be experimentally established. Broken symmetry quantum chemical calculations, as well as ab initio CASSCF-SA-SOC computations that support the magnetic experimental data, were also performed. From the analysis of other reported closely related Ni(ii) systems, a counter-c…
Structural characterization and magnetic property studies of a mixed-valence {CoIIICoII4} complex with a μ4-oxo tetrahedral {CoII4} motif
We have synthesized and structurally characterized a new mixed valence pentanuclear Co complex, bearing a rare μ4-O-tetrahedral CoII4 unit, by employing a pyridine-like Schiff base ligand. We have performed DC magnetic susceptibility and magnetization measurements over polycrystalline samples and chemical quantum computations in order to understand the exchange interaction pattern within Co(II) sites and ground state magnetic anisotropy. This new complex shows an overall antiferromagnetic exchange interaction whose strength strongly depends on the local symmetry of Co(II) sites. Also, local ion magnetic anisotropy reveals a strongly axial behaviour with the lowest Kramers doublet (KD) at ea…
Exchange coupling across the cyanide bridge: structural and DFT interpretation of the magnetic properties of a binuclear chromium(III) complex.
The reaction of [Cr(CN)6]3− with a mixture of trans-[Cr(cyclam)(OH)2]Cl, [Cr(cyclam)(OH)Cl]Cl and [Cr(cyclam)Cl2]Cl affords the cyanide bridged dimer, trans-[HO–Cr(cyclam)–NC–Cr(CN)5]−. The tetraphenylphosphonium salt of the anion crystallizes in space group P21/n and shows a bent arrangement of the Cr1–CN–Cr2 unit with the Cr1–CN bond angle at 166.9° and CN–Cr2 at 160.32°. The Cr2–O bond, trans to the hexacyanide fragment, is very short at 1.902 A. Two dimers are held together by two hydrogen bonds connecting the Cr2–OH group of each dimer with one of the NH groups of the cyclam ligand of an adjacent molecule, leading to an almost linear configuration. These dimers of dimers get packed par…
A Co36Cluster Assembled from the Reaction of Cobalt Pivalate with 2,3-Dicarboxypyrazine
A record Co36 cluster is prepared. This mixed-valent compound containing CoII and CoIII centers is formed in the reaction of a dinuclear cobalt pivalate species with the polydentate 2,3-dicarboxypyrazine ligand. In terms of magnetic properties it behaves as a {Co16-Co16} supramolecular dimer in which the S = A spin ground states of each monomer do not interact. Fil: Alborés, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, M…
Ferromagnetic coupled μ-phenoxo-μ-carboxylato heterodinuclear complexes based on the Cr(salen) moiety: Structural and magnetic characterization
The synthesis, crystal structure, and magneto-chemical characterization of two new unprecedented μ-phenoxo-μ-carboxylato heterodinuclear complexes based on the Cr(salen) moiety (salen = N,N′-bis(salicylidene)ethylenediamine), [MII(O2C(CH3)3)(OH2)2(μ-O2C(CH3)3)(μ-salen)CrIII(O2C(CH3)3)], M = Ni (2), Co(3) are reported. The dinuclear complexes were obtained starting from the mononuclear trans-[Cr(salen)(CN)2]PPh4 (1), whose crystal structure is also reported. They show a trans arrangement of the Cr(salen) unit, bridging through the phenolate O atoms to a second metal center. An additional μ2-O2-carboxylato bridge and a further monodentating carboxylate ligand complete the roughly octahedral C…
Structural and magnetic characterization of a 1D chain of [Co(II)2(mu-aqua)(mu-carboxylate)2] strung cores.
A novel 1D chain built up from stringing of [Co2(μ-OH 2)(μ-O2CC(CH3)3)2] units with the bridging 2,2′-bipyrimidine ligand has been synthesized and structurally characterized. The chains are well isolated from each other by the bulky tert-butyl groups of the carboxlyates and show an alternating zigzag configuration for the Co(II) metallic centres. DC magnetic measurements show anti-ferromagnetic coupling, Jca.-3 cm-1 between adjacent Co(II) ions along the chain. Noticeably, good data fitting was obtained by means of simple models that neglect any kind of first order orbital contribution to the spin ground state, which is normally observed in Co(II) complexes. These results were further confi…
Tailoring the Exchange Interaction in Covalently Linked Basic Carboxylate Clusters through Bridging Ligand Selection
We are reporting new dimeric units of basic carboxylates bearing the {Fe III 2M IIO} motif for M = Co and Ni, covalently bound through the tetradentate bridging (LL) 2,2′-azopyiridine (azpy) and 2,3-di(2-pyridyl)quinoxaline ligands (dpq). We structurally characterized the hexanuclear clusters, and their magnetic properties have been fully analyzed. DFT calculations have been performed as a supplementary tool. All results evidence a weak antiferromagnetic interaction through the bridging ligands between isolated spin ground states arising from intra-Fe 2MO core exchange couplings. Together with the pioneer 2,2′-bipyrimidine bridged systems, the new complexes reported constitute a family of c…
Exploring the exchange interaction in a mixed valence {CoII4CoIII2} hexanuclear cluster with novel topology
Abstract Reaction between [Co2(μ-OH2)(μ-Piv)2(Piv)2(HPiv)4] and a (salicylidene)ethanolamine ligand under ambient reaction conditions, affords hexanuclear complexes [CoIII2CoII4(Piv)8(HPiv)2(L)2(OH)2] (1–2). Both products have been characterized crystallographically and found to be mixed-valent, containing divalent and trivalent Co centers. Down to 30 K, the variable-temperature magnetic susceptibility data are dominated by the single-ion properties of high spin Co(II) centers with distorted-octahedral coordination geometries. Below this temperature, the effect of intramolecular ferromagnetic exchange interactions becomes apparent. Magnetic data has been analyzed in terms of ground isolated…
Single Molecule Magnet Features in the Butterfly [Co III 2 Ln III 2 ] Pivalate Family with Alcohol‐Amine Ligands
Structural and Magnetic Characterization of a μ-1,5-Dicyanamide-Bridged Iron Basic Carboxylate [Fe3O(O2C(CH3)3)6] 1D Chain
We are reporting an unprecedented example of a mu-1,5-dicyanamide (dca)-bridged iron basic carboxylate, [Fe3O(O2C(CH3)3)6], 1D chain. As revealed from X-ray determination, the Fe3O cores are arranged in a zigzag configuration along the chain and strictly aligned in the same plane. The chains are well-isolated by the bulky tert-butyl groups. Magnetic measurements showed that the Fe3O units are weakly antiferromagnetically coupled (J = -0.6 cm(-1)) through the dca ligand while possessing a well-isolated S = 1/2 spin ground state arising from competing antiferromagnetic interactions.
Ein Cobaltcluster aus der Reaktion von Cobaltpivalat mit 2,3-Dicarboxypyrazin
Switching nuclearity and Co(II) content through stoichiometry adjustment: {Co(II)6Co(III)3} and {Co(II)Co4(III)} mixed valent complexes and a study of their magnetic properties.
We are reporting two new mixed valent Co(ii)/Co(iii) polynuclear complexes, {Co II 6 Co III 3 } and {Co II Co III 4 }, bearing different amount of Co(ii) ions in their cores, through the employment of the multidentate triethanolamine (teaH 3 ) ligand in different stoichiometric ratios. We present a complete picture of the magnetic behaviour of both complexes through a combined usage of the susceptibility, magnetization and X-band EPR data as well as broken-symmetry DFT calculations. Compound 1 shows an atypical spin-only behaviour, probably due to the presence of four and five coordinated Co(ii) sites as well as highly distorted six coordinated Co(ii) ions, promoting a high degree of orbita…
Expanding the 2, 2’-bipyrimidine bridged 1D homonuclear coordination polymers family: [MIIbpymCl2] (M=Fe, Co) magnetic and structural characterization
One pot reaction of hydrated chloride salts of Fe(II) and Co(II) with stoichiometric amounts of 2, 2’-bipyrimidine (bpym) in a methanol/ acetonitrile mixture afforded the corresponding 1D homonuclear coordination polymers, [μ-(bpym)MCl2]n. Crystal structures of both complexes are isomorphous in the highly symmetric orthorhombic space group Fddd. The 1D coordination polymers are composed of almost orthogonal alternating bipyrimidine bridges linking the {MCl2} units. The magnetic behaviour of the Fe(II)compound can be well understood as a uniform S=2 chain with antiferromagnetic exchange interaction between metal ion sites. In the case of the Co(II) ion, also an antiferromagnetic interaction …
DFT broken-symmetry exchange couplings calculation in a 1D chain of bridged iron basic carboxylates
DFT broken-symmetry calculations at the B3LYP level were carried out to evaluate the exchange coupling constants defined by the Heisenberg-Dirac-van Vleck spin Hamiltonian (HDvV), Ĥ = -2JŜaŜb, in a 1D chain of iron basic carboxylate cores [Fe3O(Piv)6(H2O)] bridged by dicyanamide, and two related trinuclear Fe3O moieties. The chain complex was modeled as two Fe3O units that preserve all features of the repetitive unit in the infinite real system. All geometries were taken from the crystallographic data previously reported. The obtained calculated values for the J constants are in good agreement with experimental results. The weak anti-ferromagnetic inter-Fe3O core interaction along the chain…
Cover Picture: Direct CH Metalation with Chromium(II) and Iron(II): Transition-Metal Host / Benzenediide Guest Magnetic Inverse-Crown Complexes (Angew. Chem. Int. Ed. 18/2009)
Chromation and ferration are the latest additions to the concept of alkali-metal-mediated metalation, as described by J. Klett, R. E. Mulvey, and co-workers in their Communication on page 3317 ff. While the more electropositive sodium is essential for the reaction, it is the less electropositive chromium or iron that actually performs deprotonation of benzene. This novel reactivity can be likened to a game of chess in which the queen (Na) holds the king in check, while the knight (Cr, Fe) scores checkm(etal)ate.
Direct C-H metalation with chromium(ii) and iron(ii): transition- metal host/benzenediide guest magnetic inverse-crown complexes
Check M(etal)ate: The chessboard and the figures represent a special reaction in which different low-polarity metals can metalate arenes directly when they are brought into the right position. In a combination of queen (sodium) and knight (chromium or iron), it is possible for the knight (usually the weaker piece) to make a direct deadly hit on the king (benzene) in this game of elemental chess. Fil: Alborés, Pablo. Johannes Gutenberg Universitat Mainz; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Carrella, Luca M.. Johannes Gutenberg Universitat Mainz; Alemania Fil: Clegg, William. University of Newcastle; Reino Unido Fil: García Álvarez, Pablo. Univ…
CCDC 1026942: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Luca Carrella, Lorenzo Sorace, Eva Rentschler, Pablo Alborés|2015|Dalton Trans.|44|2390|doi:10.1039/C4DT03034F
CCDC 1489635: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Luca Carrella, Yvonne Rechkemmer, Joris van Slageren, Eva Rentschler, Pablo Alborés|2017|Dalton Trans.|46|3400|doi:10.1039/C6DT04713K
CCDC 1489636: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Luca Carrella, Yvonne Rechkemmer, Joris van Slageren, Eva Rentschler, Pablo Alborés|2017|Dalton Trans.|46|3400|doi:10.1039/C6DT04713K
CCDC 1478937: Experimental Crystal Structure Determination
Related Article: Irene C. Lazzarini, Luca Carrella, Eva Rentschler, Pablo Alborés|2016|Inorg.Chim.Acta|453|692|doi:10.1016/j.ica.2016.09.040
CCDC 2078695: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Mauro Perfetti, Michal Kern, Nadine Rußegger, Luca Carrella, Eva Rentschler, Joris Slageren, Pablo Alborés|2021|Eur.J.Inorg.Chem.|31|3191|doi:10.1002/ejic.202100467
CCDC 1026941: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Luca Carrella, Lorenzo Sorace, Eva Rentschler, Pablo Alborés|2015|Dalton Trans.|44|2390|doi:10.1039/C4DT03034F
CCDC 958224: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Luca Carrella, Eva Rentschler, Pablo Alborés|2014|Dalton Trans.|43|2361|doi:10.1039/C3DT52765D
CCDC 2078697: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Mauro Perfetti, Michal Kern, Nadine Rußegger, Luca Carrella, Eva Rentschler, Joris Slageren, Pablo Alborés|2021|Eur.J.Inorg.Chem.|31|3191|doi:10.1002/ejic.202100467
CCDC 1462510: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Luca Carrella, Eva Rentschler, Pablo Alborés|2016|Chem.-Eur.J.|22|14308|doi:10.1002/chem.201602681
CCDC 977362: Experimental Crystal Structure Determination
Related Article: Irene C. Lazzarini, Alejandro V. Funes, Luca Carrella, Lorenzo Sorace, Eva Rentschler, Pablo Alborés|2014|Eur.J.Inorg.Chem.||2561|doi:10.1002/ejic.201402089
CCDC 2078699: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Mauro Perfetti, Michal Kern, Nadine Rußegger, Luca Carrella, Eva Rentschler, Joris Slageren, Pablo Alborés|2021|Eur.J.Inorg.Chem.|31|3191|doi:10.1002/ejic.202100467
CCDC 2078698: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Mauro Perfetti, Michal Kern, Nadine Rußegger, Luca Carrella, Eva Rentschler, Joris Slageren, Pablo Alborés|2021|Eur.J.Inorg.Chem.|31|3191|doi:10.1002/ejic.202100467
CCDC 1938756: Experimental Crystal Structure Determination
Related Article: Guillermo Fiorini, Luca Carrella, Eva Rentschler, Pablo Alborés|2019|New J.Chem.|43|16218|doi:10.1039/C9NJ03574E
CCDC 1489634: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Luca Carrella, Yvonne Rechkemmer, Joris van Slageren, Eva Rentschler, Pablo Alborés|2017|Dalton Trans.|46|3400|doi:10.1039/C6DT04713K
CCDC 2078696: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Mauro Perfetti, Michal Kern, Nadine Rußegger, Luca Carrella, Eva Rentschler, Joris Slageren, Pablo Alborés|2021|Eur.J.Inorg.Chem.|31|3191|doi:10.1002/ejic.202100467
CCDC 1489637: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Luca Carrella, Yvonne Rechkemmer, Joris van Slageren, Eva Rentschler, Pablo Alborés|2017|Dalton Trans.|46|3400|doi:10.1039/C6DT04713K
CCDC 1489638: Experimental Crystal Structure Determination
Related Article: Alejandro V. Funes, Luca Carrella, Yvonne Rechkemmer, Joris van Slageren, Eva Rentschler, Pablo Alborés|2017|Dalton Trans.|46|3400|doi:10.1039/C6DT04713K
CCDC 1950549: Experimental Crystal Structure Determination
Related Article: Guillermo Fiorini, Luca Carrella, Eva Rentschler, Pablo Alborés|2020|Dalton Trans.|49|932|doi:10.1039/C9DT03561C