0000000000049889

AUTHOR

Erik K. Hartmann

Novel technologies to detect atelectotrauma in the injured lung

ABSTRACTCyclical recruitment and derecruitment of lung parenchyma (R/D) remains a serious problem in ALI/ARDS patients, defined as atelectotrauma. Detection of cyclical R/D to titrate the optimal respiratory settings is of high clinical importance. Image-based technologies that are capable of detecting changes of lung ventilation within a respiratory cycle include dynamic computed tomography (dCT), synchrotron radiation computed tomography (SRCT), and electrical impedance tomography (EIT). Time-dependent intra-arterial oxygen tension monitoring represents an alternative approach to detect cyclical R/D, as cyclical R/D can result in oscillations of PaO2 within a respiratory cycle. Continuous…

research product

Experimental lung injury induces cerebral cytokine mRNA production in pigs

Background Acute respiratory distress syndrome (ARDS) is an important disease with a high incidence among patients admitted to intensive care units. Over the last decades, the survival of critically ill patients has improved; however, cognitive deficits are among the long-term sequelae. We hypothesize that acute lung injury leads to upregulation of cerebral cytokine synthesis. Methods After approval of the institutional and animal care committee, 20 male pigs were randomized to one of three groups: (1) Lung injury by oleic acid injection (OAI), (2) ventilation only (CTR) or (3) untreated. We compared neuronal numbers, proportion of neurons with markers for apoptosis, activation state of Ib…

research product

Bi-Level ventilation decreases pulmonary shunt and modulates neuroinflammation in a cardiopulmonary resuscitation model

Background Optimal ventilation strategies during cardiopulmonary resuscitation are still heavily debated and poorly understood. So far, no convincing evidence could be presented in favour of outcome relevance and necessity of specific ventilation patterns. In recent years, alternative models to the guideline-based intermittent positive pressure ventilation (IPPV) have been proposed. In this randomized controlled trial, we evaluated a bi-level ventilation approach in a porcine model to assess possible physiological advantages for the pulmonary system as well as resulting changes in neuroinflammation compared to standard measures. Methods Sixteen male German landrace pigs were anesthetized a…

research product

Transmission of arterial oxygen partial pressure oscillations to the cerebral microcirculation in a porcine model of acute lung injury caused by cyclic recruitment and derecruitment.

Cyclic recruitment and derecruitment (R/D) play a key role in the pathomechanism of acute lung injury (ALI) leading to respiration-dependent oscillations of arterial partial pressure of oxygen (Pa(O(2))). These Pa(O(2)) oscillations could also be forwarded to the cerebral microcirculation.In 12 pigs, partial pressure of oxygen was measured in the thoracic aorta (Pa(O(2))) and subcortical cerebral tissue (Pbr(O(2))). Cerebral cortical haemoglobin oxygen saturation (Sbr(O(2))), cerebral blood flow (CBF), and peripheral haemoglobin saturation (Sp(O(2))) were assessed by spectroscopy and laser Doppler flowmetry. Measurements at different fractions of inspired oxygen (F(I(O(2)))) were performed …

research product

An inhaled tumor necrosis factor-alpha-derived TIP peptide improves the pulmonary function in experimental lung injury: inhaled TIP peptide in experimental ALI

INTRODUCTION The lectin-like domain of TNF-α enhances the fluid clearance across the alveolar barrier. For experimental purposes, the lectin-like domain can be mimicked by a synthetic peptide representing the TIP-motif of TNF-α. The present study aims to assess the acute effect of TIP on the pulmonary function in a porcine model of acute respiratory distress syndrome (ARDS). METHODS Lung injury was induced in 16 pigs (25-27 kg) by bronchoalveolar lavage followed by injurious ventilation. Following randomisation, either nebulised TIP (1 mg/kg; AP301, APEPTICO, Vienna, Austria) or water for injection (control group) was administered. During 5 h of monitoring, the extravascular lung water inde…

research product

Bronchoalveolar Lavage and Oleic Acid-Injection in Pigs as a Double-Hit Model for Acute Respiratory Distress Syndrome (ARDS).

The treatment of ARDS continues to pose major challenges for intensive care physicians in the 21st century with mortality rates still reaching up to 50% in severe cases. Further research efforts are needed to better understand the complex pathophysiology of this disease. There are different well-established animal models to induce acute lung injury but none has been able to adequately mimic the complex pathomechanisms of ARDS. The most crucial factor for the development of this condition is the damage to the alveolar capillary unit. The combination of two well-established lung injury models allow us to mimic in more detail the underlying pathomechanism. Bronchoalveolar lavage (BAL) leads to…

research product

Ultra-low tidal volume ventilation-A novel and effective ventilation strategy during experimental cardiopulmonary resuscitation.

Abstract Background The effects of different ventilation strategies during CPR on patient outcomes and lung physiology are still poorly understood. This study compares positive pressure ventilation (IPPV) to passive oxygenation (CPAP) and a novel ultra-low tidal volume ventilation (ULTVV) regimen in an experimental ventricular fibrillation animal model. Study design Prospective randomized controlled trial. Animals 30 male German landrace pigs (16–20 weeks). Methods Ventricular fibrillation was induced in anesthetized and instrumented pigs and the animals were randomized into three groups. Mechanical CPR was initiated and ventilation was either provided by means of standard IPPV (RR: 10/min,…

research product

Assessment of regional ventilation distribution: comparison of vibration response imaging (VRI) with electrical impedance tomography (EIT)

BACKGROUND: Vibration response imaging (VRI) is a bedside technology to monitor ventilation by detecting lung sound vibrations. It is currently unknown whether VRI is able to accurately monitor the local distribution of ventilation within the lungs. We therefore compared VRI to electrical impedance tomography (EIT), an established technique used for the assessment of regional ventilation. METHODOLOGY/PRINCIPAL FINDINGS: Simultaneous EIT and VRI measurements were performed in the healthy and injured lungs (ALI; induced by saline lavage) at different PEEP levels (0, 5, 10, 15 mbar) in nine piglets. Vibration energy amplitude (VEA) by VRI, and amplitudes of relative impedance changes (rel.ΔZ) …

research product

Short-Time Ocular Ischemia Induces Vascular Endothelial Dysfunction and Ganglion Cell Loss in the Pig Retina

Visual impairment and blindness are often caused by retinal ischemia-reperfusion (I/R) injury. We aimed to characterize a new model of I/R in pigs, in which the intraocular pathways were not manipulated by invasive methods on the ocular system. After 12 min of ischemia followed by 20 h of reperfusion, reactivity of retinal arterioles was measured in vitro by video microscopy. Dihydroethidium (DHE) staining, qPCR, immunohistochemistry, quantification of neurons in the retinal ganglion cell layer, and histological examination was performed. Retinal arterioles of I/R-treated pigs displayed marked attenuation in response to the endothelium-dependent vasodilator, bradykinin, compared to sham-tre…

research product

Ventilation/perfusion ratios measured by multiple inert gas elimination during experimental cardiopulmonary resuscitation

Background During cardiopulmonary resuscitation (CPR) the ventilation/perfusion distribution (VA/Q) within the lung is difficult to assess. This experimental study examines the capability of multiple inert gas elimination (MIGET) to determine VA/Q under CPR conditions in a pig model. Methods Twenty-one anaesthetised pigs were randomised to three fractions of inspired oxygen (1.0, 0.7 or 0.21). VA/Q by micropore membrane inlet mass spectrometry-derived MIGET was determined at baseline and during CPR following induction of ventricular fibrillation. Haemodynamics, blood gases, ventilation distribution by electrical impedance tomography and return of spontaneous circulation were assessed. Inter…

research product

Influence of respiratory rate and end-expiratory pressure variation on cyclic alveolar recruitment in an experimental lung injury model

Introduction Cyclic alveolar recruitment/derecruitment (R/D) is an important mechanism of ventilator-associated lung injury. In experimental models this process can be measured with high temporal resolution by detection of respiratory-dependent oscillations of the paO2 (ΔpaO2). A previous study showed that end-expiratory collapse can be prevented by an increased respiratory rate in saline-lavaged rabbits. The current study compares the effects of increased positive end-expiratory pressure (PEEP) versus an individually titrated respiratory rate (RRind) on intra-tidal amplitude of Δ paO2 and on average paO2 in saline-lavaged pigs. Methods Acute lung injury was induced by bronchoalveolar lavag…

research product

Standardized Hemorrhagic Shock Induction Guided by Cerebral Oximetry and Extended Hemodynamic Monitoring in Pigs.

Hemorrhagic shock ranks among the main reasons for severe injury-related death. The loss of circulatory volume and oxygen carriers can lead to an insufficient oxygen supply and irreversible organ failure. The brain exerts only limited compensation capacities and is particularly at high risk of severe hypoxic damage.This article demonstrates the reproducible induction of life-threatening hemorrhagic shock in a porcine model by means of calculated blood withdrawal. We titrate shock induction guided by near-infrared spectroscopy and extended hemodynamic monitoring to display systemic circulatory failure, as well as cerebral microcirculatory oxygen depletion. In comparison to similar models tha…

research product

Standardized Model of Ventricular Fibrillation and Advanced Cardiac Life Support in Swine

Cardiopulmonary resuscitation after cardiac arrest, independent of its origin, is a regularly encountered medical emergency in hospitals as well as preclinical settings. Prospective randomized trials in human subjects are difficult to design and ethically ambiguous, which results in a lack of evidence-based therapies. The model presented in this report represents one of the most common causes of cardiac arrests, ventricular fibrillation, in a standardized setting in a large animal model. This allows for reproducible observations and various therapeutic interventions under clinically accurate conditions, hence facilitating the generation of better evidence and eventually the potential for im…

research product

Responses of retinal arterioles and ciliary arteries in pigs with acute respiratory distress syndrome (ARDS)

Abstract Acute respiratory distress syndrome (ARDS) is a clinical syndrome of acute lung failure in critically sick patients, which severely compromises the function of multiple organs, including the brain. Although, the optic nerve and the retina are a part of the central nervous system, the effects of ARDS on these ocular structures are completely unknown. Thus, the major goal of this study was to test the hypothesis that ARDS affects vascular function in the eye. ARDS was induced in anesthetized pigs by intratracheal injection of lipopolysaccharide (LPS). Sham-treated animals served as controls. Pigs were monitored for 8 h and then sacrificed. Subsequently, retinal arterioles and short p…

research product

Influence of inspiration to expiration ratio on cyclic recruitment and derecruitment of atelectasis in a saline lavage model of acute respiratory distress syndrome

OBJECTIVE Cyclic recruitment and derecruitment of atelectasis can occur during mechanical ventilation, especially in injured lungs. Experimentally, cyclic recruitment and derecruitment can be quantified by respiration-dependent changes in PaO2 (ΔPaO2), reflecting the varying intrapulmonary shunt fraction within the respiratory cycle. This study investigated the effect of inspiration to expiration ratio upon ΔPaO2 and Horowitz index. DESIGN Prospective randomized study. SETTING Laboratory investigation. SUBJECTS Piglets, average weight 30 ± 2 kg. INTERVENTIONS At respiratory rate 6 breaths/min, end-inspiratory pressure (Pendinsp) 40 cm H2O, positive end-expiratory pressure 5 cm H2O, and FIO2…

research product

Effect of fluid resuscitation on cerebral integrity: A prospective randomised porcine study of haemorrhagic shock.

BACKGROUND The treatment of haemorrhagic shock is a challenging task. Colloids have been regarded as standard treatment, but their safety and benefit have been the subject of controversial debates. Negative effects, including renal failure and increased mortality, have resulted in restrictions on their administration. The cerebral effects of different infusion regimens are largely unknown. OBJECTIVES The current study investigated the impact of gelatine-polysuccinate, hydroxyethyl starch (HES) and balanced electrolyte solution (BES) on cerebral integrity, focusing on cerebral inflammation, apoptosis and blood flow in pigs. DESIGN Randomised experimental study. SETTING University-affiliated …

research product

PaO2oscillations caused by cyclic alveolar recruitment can be monitored in pig buccal mucosa microcirculation

BACKGROUND Cyclic alveolar recruitment and derecruitment play a role in the pathomechanism of acute lung injury and may lead to arterial partial pressure of oxygen (PaO(2) ) oscillations within the respiratory cycle. It remains unknown, however, if these PaO(2) oscillations are transmitted to the microcirculation. The present study investigates if PaO(2) oscillations can be detected in the pig buccal mucosa microcirculation. METHODS Respiratory failure was induced by surfactant depletion in seven pigs. PaO(2) oscillations caused by cyclic recruitment and derecruitment were measured in the thoracic aorta by fast fluorescence quenching of oxygen technology. Haemoglobin oxygen saturation, haem…

research product

Fluid resuscitation-related coagulation impairment in a porcine hemorrhagic shock model.

Background Fast and effective treatment of hemorrhagic shock is one of the most important preclinical trauma care tasks e.g., in combat casualties in avoiding severe end-organ damage or death. In scenarios without immediate availability of blood products, alternate regimens of fluid resuscitation represent the only possibility of maintaining sufficient circulation and regaining adequate end-organ oxygen supply. However, the fluid choice alone may affect the extent of the bleeding by interfering with coagulation pathways. This study investigates the impact of hydroxyethyl starch (HES), gelatine-polysuccinate (GP) and balanced electrolyte solution (BES) as commonly used agents for fluid resu…

research product

Lung injury does not aggravate mechanical ventilation-induced early cerebral inflammation or apoptosis in an animal model.

INTRODUCTION:The acute respiratory distress syndrome is not only associated with a high mortality, but also goes along with cognitive impairment in survivors. The cause for this cognitive impairment is still not clear. One possible mechanism could be cerebral inflammation as result of a "lung-brain-crosstalk". Even mechanical ventilation itself can induce cerebral inflammation. We hypothesized, that an acute lung injury aggravates the cerebral inflammation induced by mechanical ventilation itself and leads to neuronal damage. METHODS:After approval of the institutional and state animal care committee 20 pigs were randomized to one of three groups: lung injury by central venous injection of …

research product

Random allogeneic blood transfusion in pigs: characterisation of a novel experimental model.

BackgroundOrgan cross-talk describes interactions between a primary affected organ and a secondarily injured remote organ, particularly in lung-brain interactions. A common theory is the systemic distribution of inflammatory mediators that are released by the affected organ and transferred through the bloodstream. The present study characterises the baseline immunogenic effects of a novel experimental model of random allogeneic blood transfusion in pigs designed to analyse the role of the bloodstream in organ cross-talk.MethodsAfter approval of the State and Institutional Animal Care Committee, 20 anesthetized pig were randomized in a donor and an acceptor (eachn = 8): the acceptor animals …

research product

Targeted fibre-optical intrabronchial lipopolysaccharide administration in pigs – a methodical refinement for improved accuracy in respiratory research

To establish and evaluate a standardized method of targeted, intrabronchial drug delivery in pigs.Randomized controlled trial.A total of 16 German Landrace pigs (Sus scrofa), age range 12‒16 weeks, and weighing 28‒35 kg.The animals were anaesthetized, intubated, and instrumented with extended cardiovascular monitoring. Lung injury was induced by administering via a flexible fibre-optic endoscope using 100 mL saline solution containing either 20 mg of Escherichia coli lipopolysaccharide (E. coli LPS) (n = 8) or no additive (sham, n = 8) into the two distal mainstem bronchi. The animals were monitored for 8 hours and arterial oxygenation, inspiratory pressure and arterial blood pressure were …

research product

Pulmonary effects of expiratory-assisted small-lumen ventilation during upper airway obstruction in pigs

Summary Novel devices for small-lumen ventilation may enable effective inspiration and expiratory ventilation assistance despite airway obstruction. In this study, we investigated a porcine model of complete upper airway obstruction. After ethical approval, we randomly assigned 13 anaesthetised pigs either to small-lumen ventilation following airway obstruction (n = 8) for 30 min, or to volume-controlled ventilation (sham setting, n = 5). Small-lumen ventilation enabled adequate gas exchange over 30 min. One animal died as a result of a tension pneumothorax in this setting. Redistribution of ventilation from dorsal to central compartments and significant impairment of the distribution of ve…

research product

Oleic Acid-Injection in Pigs As a Model for Acute Respiratory Distress Syndrome

The acute respiratory distress syndrome is a relevant intensive care disease with an incidence ranging between 2.2% and 19% of intensive care unit patients. Despite treatment advances over the last decades, ARDS patients still suffer mortality rates between 35 and 40%. There is still a need for further research to improve the outcome of patients suffering from ARDS. One problem is that no single animal model can mimic the complex pathomechanism of the acute respiratory distress syndrome, but several models exist to study different parts of it. Oleic acid injection (OAI)-induced lung injury is a well-established model for studying ventilation strategies, lung mechanics and ventilation/perfus…

research product