0000000000053006

AUTHOR

Magdalena Rowinska-zyrek

0000-0002-0425-1128

A Comparative Study on Nickel Binding to Hpn-like Polypeptides from Two Helicobacter pylori Strains

Combined potentiometric titration and isothermal titration calorimetry (ITC) methods were used to study the interactions of nickel(II) ions with the N-terminal fragments and histidine-rich fragments of Hpn-like protein from two Helicobacter pylori strains (11637 and 26695). The ITC measurements were performed at various temperatures and buffers in order to extract proton-independent reaction enthalpies of nickel binding to each of the studied protein fragments. We bring up the problem of ITC results of nickel binding to the Hpn-like protein being not always compatible with those from potentiometry and MS regarding the stoichiometry and affinity. The roles of the ATCUN motif and multiple His…

research product

Peptidomimetics – An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules

The involvement of metal ions in interactions with therapeutic peptides is inevitable. They are one of the factors able to fine-tune the biological properties of antimicrobial peptides, a promising group of drugs with one large drawback - a problematic metabolic stability. Appropriately chosen, proteolytically stable peptidomimetics seem to be a reasonable solution of the problem, and the use of D-, β-, γ-amino acids, unnatural amino acids, azapeptides, peptoids, cyclopeptides and dehydropeptides is an infinite reservoir of metal binding motifs in metabolically stable, well-designed, biologically active molecules. Below, their specific structural features, metal-chelating abilities and anti…

research product

Poly-Gly Region Regulates the Accessibility of Metal Binding Sites in Snake Venom Peptides

It is supposed that the presence of poly-His regions in close proximity to poly-Gly domains in snake venoms is related to their biological activity; poly-His/poly-Gly (pHpG) peptides inhibit the activity of metalloproteinases during venom storage via the chelation metal ions, necessary for their proper functioning. This work shows that only the histidyl residues from the N-terminal VDHDHDH motif (but not from the poly-His tag) were the primary Zn(II) binding sites and that the poly-Gly domain situated in the proximity of a central proline residue may play a regulatory role in venom gland protection. The proline induces a kink of the peptide, resulting in steric hindrance, which may modulate…

research product

Antimicrobial peptide–metal ion interactions – a potential way of activity enhancement

Increasing bacterial and fungal drug resistance requires novel, effective antimicrobial treatments to be actively sought. Because of a general lack of resistance towards antimicrobial peptides (AMPs), they are being relied on as a novel class of therapeutics aiming to conquer drug-resistant bacteria and fungi. There are numerous ways in which AMPs might interact with pathogens, such as membrane disruption, production of ROS, inhibition of cell wall, nucleic acid and protein synthesis or by the withdrawal of essential metal ions. Biologically indispensable metal ions have a dual effect on the activity of antimicrobial peptides: (i) AMPs bind them, so that microbes cannot get enough metals es…

research product

Uncapping the N-terminus of a ubiquitous His-tag peptide enhances its Cu2+ binding affinity

Metal complexes with an N-terminally free and N-terminally acetylated polyhistidine region of Echis ocellatus venom, with an interesting His-rich motif present in numerous metal binding proteins from all kingdoms of life (DHDHDHHHHHHPGSSV-NH2 and Ac-DHDHDHHHHHHPGSSV-NH2) show the role of the free amino group in the thermodynamic enhancement of Cu2+, Ni2+ and Zn2+ binding. In the studied sequences, Cu2+ can be coordinated by different sets of imidazole rings, and a 3–10 helix is detected in close proximity of Cu2+ binding sites. The complexes are more stable than those with a typical His6-tag, despite a similar copper(II) coordination mode in both cases.

research product

Zn(II)-alloferon complexes - Similar sequence, different coordination modes, no antibacterial activity.

Often, in the search for a highly defined scientific phenomenon, a different one becomes apparent. This was also the case of this work, in the scope of which we planned to search for metal-enhanced, novel antibacterial/ antifungal compounds. Instead, we denied the existence of such and revealed the details of the bioinorganic chemistry of Zn(II)-alloferon complexes. Zinc(II) complexes of alloferon 1 and 2, ligands with a sequential difference of one amino acid only, show a substantially different coordination pattern at physiological pH. In the case of Zn(II)-alloferon 1 species, a histamine-like binding mode is observed (N-terminal amine and imidazole of His-1) and the coordination sphere …

research product

Thermodynamic surprises of Cu(II)–amylin analogue complexes in membrane mimicking solutions

AbstractMembrane environment often has an important effect on the structure, and therefore also on the coordination mode of biologically relevant metal ions. This is also true in the case of Cu(II) coordination to amylin analogues—rat amylin, amylin1–19, pramlintide and Ac-pramlintide, which offer N-terminal amine groups and/or histidine imidazoles as copper(II) anchoring sites. Complex stabilities are comparable, with the exception of the very stable Cu(II)–amylin1–19, which proves that the presence of the amylin C-terminus lowers its affinity for copper(II); although not directly involved, its appropriate arrangement sterically prevents early metal binding. Most interestingly, in membrane…

research product

Pneumococcal HxxHxH triad – Copper(II) interactions – How important is the ‘x’?

Abstract PhtA, a Streptococcus pneumoniae polyhistidine triad protein, which contributes to virulence by interacting with components of the immune system, by being involved in adherence of bacteria and in Zn(II) uptake, contains five copies of the HxxHxH sequence. Since this motif is also present in numerous Cu(II) binding proteins, we decided to focus on the bioinorganic chemistry of copper(II) with three of such PhtA repeats, in order to understand which of the PhtA triads binds Cu(II) with the highest affinity and explain if Cu(II) would be able to outcompete Zn(II) from its native binding site under physiological metal concentrations.

research product

Copper(II)-Induced Restructuring of ZnuD, a Zinc(II) Transporter from Neisseria meningitidis.

Cluster 2 (288HDDDNAHAHTH298) from Neisseria meningitidis ZnuD is a flexible loop that captures zinc(II) ions, acting as a "fishing net". We describe its Zn(II) and Cu(II) binding capabilities, focusing on the thermodynamics of such interactions and comparing them with the complexes of the 1MAHHHHHHL9-NH2 region. Copper(II) complexes with the studied ZnuD regions are thermodynamically more stable than the zinc(II) ones-Cu(II) complexes dominate in solution even in close to physiological ratios of the studied metal ions (a 10-fold excess of Zn(II) over Cu(II)). While the binding of native Zn(II) has no significant impact on the structure of its transporter, Cu(II) binding induces a conformat…

research product

Impact of histidine spacing on modified polyhistidine tag – Metal ion interactions

Abstract Histidine rich sequences are chosen both by nature and by molecular biologists due to their high affinity towards metal ions. In this work, we examine the affinity and binding modes of Cu 2+ , Ni 2+ and Zn 2+ towards two histidine tags, the common His 6 -tag (Ac-HHHHHH-NH 2 ) and its modified sequence, which also contains six histidines, but separated with two alanine residues (Ac-HAAHAAHAAHAAHAAHAA-NH 2 ). The spatial separation of histidines has an important impact on its coordination properties. Cu 2+ and Ni 2+ complexes with Ac-HHHHHH-NH 2 are more stable than those with Ac-HAAHAAHAAHAAHAAHAA-NH 2 ; the contrary is observed for Zn 2+ . In a narrow range of pH, Cu 2+ -Ac-HHHHHH-…

research product

Metal Complexes of Two Specific Regions of ZnuA, a Periplasmic Zinc(II) Transporter from Escherichia coli

The crystal structure of ZnZnuA from Escherichia coli reveals two metal binding sites. (i) The primary binding site, His143, is located close the His-rich loop (residues 116-138) and plays a significant role in Zn(II) acquisition. (ii) The secondary binding site involves His224. In this work, we focus on understanding the interactions of two metal ions, Zn(II) and Cu(II), with two regions of ZnuA, which are possible anchoring sites for Zn(II): Ac-115MKSIHGDDDDHDHAEKSDEDHHHGDFNMHLW145-NH2 (primary metal binding site) and Ac-223GHFTVNPEIQPGAQRLHE240-NH2 (secondary metal binding site). The histidine-rich loop (residues 116-138) has a role in the capture of zinc(II), which is then further deliv…

research product

Copper(II)-Binding Induces a Unique Polyproline Type II Helical Structure within the Ion-Binding Segment in the Intrinsically Disordered F-Domain of Ecdysteroid Receptor from Aedes aegypti

Reproduction of the dominant vector of Zika and dengue diseases, Aedes aegypti mosquito, is controlled by an active heterodimer complex composed of the 20-hydroxyecdysone receptor (EcR) and ultraspiracle protein. Although A. aegypti EcR shares the structural and functional organization with other nuclear receptors, its C-terminus has an additional long F domain (AaFEcR). Recently, we showed that the full length AaFEcR is intrinsically disordered with the ability to specifically bind divalent metal ions. Here, we describe the details of the exhaustive structural and thermodynamic properties of Zn2+- and Cu2+-complexes with the AaFEcR domain, based on peptide models of its two putative metal …

research product

Biophysical approaches for the study of metal-protein interactions

Protein-protein interactions play important roles for a variety of cell functions, often involving metal ions; in fact, metal-ion binding mediates and regulates the activity of a wide range of biomolecules. Enlightening all of the specific features of metal-protein and metal-mediated protein-protein interactions can be a very challenging task; a detailed knowledge of the thermodynamic and spectroscopic parameters and the structural changes of the protein is normally required. For this purpose, many experimental techniques are employed, embracing all fields of Analytical and Bioinorganic Chemistry. In addition, the use of peptide models, reproducing the primary sequence of the metal-binding …

research product

Histidine tracts in human transcription factors: insight into metal ion coordination ability

Consecutive histidine repeats are chosen both by nature and by molecular biologists due to their high affinity towards metal ions. Screening of the human genome showed that transcription factors are extremely rich in His tracts. In this work, we examine two of such His-rich regions from forkhead box and MAFA proteins—MB3 (contains 18 His) and MB6 (with 21 His residues), focusing on the affinity and binding modes of Cu2+ and Zn2+ towards the two His-rich regions. In the case of Zn2+ species, the availability of imidazole nitrogen donors enhances metal complex stability. Interestingly, an opposite tendency is observed for Cu2+ complexes at above physiological pH, in which amide nitrogens part…

research product

Zn-Enhanced Asp-Rich Antimicrobial Peptides N-Terminal Coordination by Zn(II) and Cu(II), Which Distinguishes Cu(II) Binding to Different Peptides

The antimicrobial activity of surfactant-associated anionic peptides (SAAPs), which are isolated from the ovine pulmonary surfactant and are selective against the ovine pathogen Mannheimia haemolytica, is strongly enhanced in the presence of Zn(II) ions. Both calorimetry and ITC measurements show that the unique Asp-only peptide SAAP3 (DDDDDDD) and its analogs SAAP2 (GDDDDDD) and SAAP6 (GADDDDD) have a similar micromolar affinity for Zn(II), which binds to the N-terminal amine and Asp carboxylates in a net entropically-driven process. All three peptides also bind Cu(II) with a net entropically-driven process but with higher affinity than they bind Zn(II) and coordination that involves the N…

research product

Pneumococcal histidine triads – involved not only in Zn2+, but also Ni2+ binding?

Polyhistidine triad proteins, which participate in Zn2+ uptake in Streptococcus pneumoniae, contain multiple copies of the HxxHxH (histidine triad motif) sequence. We focus on three such motifs from one of the most common and well-conserved polyhistidine triad proteins, PhtA, in order to understand their bioinorganic chemistry; particular focus is given to (i) understanding which of the PhtA triads binds Zn2+ with the highest affinity (and why) and (ii) explaining whether Ni2+ (also crucial for bacterial survival and virulence) could potentially outcompete Zn2+ at its native binding site. There is no significant difference in the stability of zinc(II) complexes with the three studied protei…

research product

Zinc(II)—The Overlooked Éminence Grise of Chloroquine’s Fight against COVID-19?

The authors would like to thank Agnieszka Michalczuk for providing us with her artistic vision of SARS-CoV-2.

research product

Ag+ Complexes as Potential Therapeutic Agents in Medicine and Pharmacy

Silver is a non-essential element with promising antimicrobial and anticancer properties. This work is a detailed summary of the newest findings on the bioinorganic chemistry of silver, with a special focus on the applications of Ag+ complexes and nanoparticles. The coordination chemistry of silver is given a reasonable amount of attention, summarizing the most common silver binding sites and giving examples of such binding motifs in biologically important proteins. Possible applications of this metal and its complexes in medicine, particularly as antibacterial and antifungal agents and in cancer therapy, are discussed in detail. The most recent data on silver nanoparticles are also summari…

research product

Zn(II) and Ni(II) complexes with poly-histidyl peptides derived from a snake venom

Abstract The snake venoms are complex mixtures containing many bioactive peptides and proteins; some of them are aimed to protect the snake glands, where the venom is stored, until the latter is inoculated in the victim. In the venom of some vipers of the genus Atheris , a set of peptides containing poly-His and poly-Gly segments was recently found. Poly-His peptides are not rare in Nature. Although their exact biological function is most often unknown, one thing is certain: they have good binding properties towards the transition metal ions. As a matter of fact, the imidazole side chain of histidine is one of the groups most frequently involved in metal complexation in the active sites of …

research product

Poly-Xaa Sequences in Proteins - Biological Role and Interactions with Metal Ions: Chemical and Medical Aspects

Background: The understanding of the bioinorganic and coordination chemistry of metalloproteins containing unusual poly-Xaa sequences, in which a single amino acid is repeated consecutively, is crucial for describing their metal binding-structure-function relationship, and therefore also crucial for understanding their medicinal potential. To the best of our knowledge, this is the first systematic review on metal complexes with polyXaa sequences. Methods: We performed a thorough search of high quality peer reviewed literature on poly-Xaa type of sequences in proteins, focusing on their biological importance and on their interactions with metal ions. Results: 228 papers were included in the…

research product

Metal specificity of the Ni(II) and Zn(II) binding sites of the N-terminal and G-domain of E. coli HypB

HypB is one of the chaperones required for proper nickel insertion into [NiFe]-hydrogenase. Escherichia coli HypB has two potential Ni(II) and Zn(II) binding sites—the N-terminal one and the so-called GTPase one. The metal-loaded HypB–SlyD metallochaperone complex activates nickel release from the N-terminal HypB site. In this work, we focus on the metal selectivity of the two HypB metal binding sites and show that (i) the N-terminal region binds Zn(II) and Ni(II) ions with higher affinity than the G-domain and (ii) the lower affinity G domain binds Zn(II) more effectively than Ni(II). In addition, the high affinity N-terminal domain, both in water and membrane mimicking SDS solution, has a…

research product

Zinc Binding Sites Conserved in Short Neuropeptides Containing a Diphenylalanine Motif

A diphenylalanine motif in peptides plays a crucial role in supramolecular systems. The current work represents a novel strategy in which a diphenylalanine motif in the central domain of neuropeptides conserves the specific Zn2+ binding site and prevents "hopping" of the Zn2+ ion between alternative metal binding sites. Alternative metal binding sites may also include carboxylic atoms in the terminal domains of a peptide. Therefore, one needs to design a peptide in which the metal will not bind the carboxylic groups in the terminal domains. Herein, we propose that engineering and designing peptides with a diphenylalanine motif in the central domain may yield excellent metal chelators.

research product