Solid-state-biased coherent detection of ultra-broadband terahertz pulses
Significant progress in nonlinear and ultrafast optics has recently opened new and exciting opportunities for terahertz (THz) science and technology, which require the development of reliable THz sources, detectors, and supporting devices. In this work, we demonstrate the first solid-state technique for the coherent detection of ultra-broadband THz pulses (0.1-10 THz), relying on the electric-field-induced second-harmonic generation in a thin layer of ultraviolet fused silica. The proposed CMOS-compatible devices, which can be realized with standard microfabrication techniques, allow us to perform ultra-broadband detection with a high dynamic range by employing probe laser powers and bias v…
Homodyne Solid-State Biased Coherent Detection of Ultra-Broadband Terahertz Pulses with Static Electric Fields.
We present an innovative implementation of the solid-state-biased coherent detection (SSBCD) technique, which we have recently introduced for the reconstruction of both amplitude and phase of ultra-broadband terahertz pulses. In our previous works, the SSBCD method has been operated via a heterodyne scheme, which involves demanding square-wave voltage amplifiers, phase-locked to the THz pulse train, as well as an electronic circuit for the demodulation of the readout signal. Here, we demonstrate that the SSBCD technique can be operated via a very simple homodyne scheme, exploiting plain static bias voltages. We show that the homodyne SSBCD signal turns into a bipolar transient when the stat…
Invited Article: Ultra-broadband terahertz coherent detection via a silicon nitride-based deep sub-wavelength metallic slit
We present a novel class of CMOS-compatible devices aimed to perform the solid-state-biased coherent detection of ultrashort terahertz pulses, i.e., featuring a gap-free bandwidth at least two decades-wide. Such a structure relies on a 1-µm-wide slit aperture located between two parallel aluminum pads, embedded in a 1-µm-thick layer of silicon nitride, and deposited on a quartz substrate. We show that this device can detect ultra-broadband terahertz pulses by employing unprecedented low optical probe energies of only a few tens of nanojoules. This is due to the more than one order of magnitude higher nonlinear coefficient of silicon nitride with respect to silica, the nonlinear material emp…
On-chip frequency combs and telecommunications signal processing meet quantum optics
Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantum technologies, practical access to the generation and manipulation of photon states carrying significant quantum resources is required. Recently, integrated photonics has become a leading platform for the compact and cost-efficient generation and processing of optical quantum states. Despite significant advances, most on-chip nonclassical light sources are still limited to basic bi-photon systems formed by two-dimensional states (i.e., qubits). An interesting approach bearing …
Proof-of-Principle Direct Measurement of Particle Statistical Phase
The symmetrization postulate in quantum mechanics is formally reflected in the appearance of an exchange phase governing the symmetry of identical-particle global states under particle swapping. Many indirect measurements of this fundamental phase have been reported thus far, but a direct observation has been achieved only recently for photons. Here, we propose a general scheme capable of directly measuring the exchange phase of any type of particle (bosons, fermions, or anyons), exploiting the operational framework of spatially localized operations and classical communication. We experimentally implement it on an all-optical platform, providing a proof of principle for different simulated …
Generation and Coherent Control of Pulsed Quantum Frequency Combs
We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications…
Counter-propagating difference frequency mixing in diamond with terahertz waves
We investigate four-wave mixing between terahertz and optical pulses in diamond. We observe the occurrence of sum and difference frequency generation, with the latter being phase-matched for terahertz pulses counter-propagating to the optical field.
On-chip generation of high-dimensional entangled quantum states and their coherent control
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science1. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics2, for increasing the sensitivity of quantum imaging schemes3, for improving the robustness and key rate of quantum communication protocols4, for enabling a richer variety of quantum simulations5, and for achieving more efficient and error-tolerant quantum computation6. Integrated photonics has recently become a leading platform for the co…
Generation and coherent manipulation of complex quantum states based on integrated frequency combs
The investigation and use of integrated frequency comb sources (i.e. featured by equally-spaced discrete spectral modes) have recently provided a unique framework to address the challenges of generation and coherent manipulation of complex quantum states in on-chip devices. We exploit integrated frequency combs for generating entangled photon pairs, as well as multi-photon states, and high-dimensional (D-level, i.e. quDit) entangled photons. In particular, we manage to coherently manipulate such complex quantum systems by using telecommunications components (standard fiber telecom).
Scalable and effective multi-level entangled photon states: a promising tool to boost quantum technologies
Abstract Multi-level (qudit) entangled photon states are a key resource for both fundamental physics and advanced applied science, as they can significantly boost the capabilities of novel technologies such as quantum communications, cryptography, sensing, metrology, and computing. The benefits of using photons for advanced applications draw on their unique properties: photons can propagate over long distances while preserving state coherence, and they possess multiple degrees of freedom (such as time and frequency) that allow scalable access to higher dimensional state encoding, all while maintaining low platform footprint and complexity. In the context of out-of-lab use, photon generation…
Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate
We observe second harmonic generation via random quasi-phase-matching in a 2.0 micron periodically poled, 1-cm-long, z-cut lithium tantalate. Away from resonance, the harmonic output profiles exhibit a characteristic pattern stemming from a stochastic domain distribution and a quadratic growth with the fundamental excitation, as well as a broadband spectral response. The results are in good agreement with a simple model and numerical simulations in the undepleted regime, assuming an anisotropic spread of the random nonlinear component. (C) 2010 Optical Society of America
Removing phase ambiguity in fiber-based interferometers for coherent time-bin operations
Time is a practical and robust degree of freedom for the encoding of quantum information. Qubits encoded in so-called 'time-bins', allowing a discrete superposition of two potential arrival times, have their entanglement preserved even over long propagation distances in standard fiber networks [1]. Time has also been used for the preparation of more complex quantum systems, such as hyper-entangled and cluster states [2]. These qualities put time-bin encoding at the center of applications ranging from quantum state preparation through to quantum communications and information processing. One of the hallmarks of the scheme is that a nonlinear element has to be pumped with phase-coherent doubl…
Telecom-compatible, affordable and scalable quantum technologies
The realistic implementation of quantum architectures relies on the development of scalable, resource-efficient platforms that are compatible with CMOS technologies as well as fiber networks. This work demonstrates novel schemes utilized for time-/frequency-bin entanglement generation and processing by leveraging existing telecommunications and integrated photonics infrastructures.
Random quasi-phase-matched second harmonic generation in periodically poled lithium tantalate
We experimentally observed and explained bulk second harmonic generation via random quasi-phase-matching, derived from a periodically poled lithium tantalate sample with a randomly patterned mark-to-space-ratio.
On-chip Generation, Coherent Control and Processing of Complex Entangled Photon States
We demonstrate the on-chip generation of time-bin entangled two- and multi-photon qubit states, as well as high-dimensional frequency-entangled photon pairs. Combining time and frequency entanglement, we generate high-dimensional optical cluster states and implement proof-of-concept high-dimensional one-way quantum computing. This, by using standard, fiber-based telecommunication components.
Highly Sensitive Polarization Rotation Measurement through a High‐Order Vector Beam Generated by a Metasurface
The precise determination of the polarization state of light is fundamental for a vast variety of applications in remote sensing, astronomy, optics and terahertz technology, to name just a few. Typically, polarization characterization is performed by using a combination of multiple optical devices such as beam splitters, polarizers, and waveplates. Moreover, to achieve high-precision, balanced photodetectors and lock-in amplifiers are employed, thus contributing to increasing system complexity. Here, a technique for polarization rotation measurements with a dynamic range of 180° and a sensitivity of about 10−2 degrees is realized using a properly designed metasurface. Such device generates …
Kerr Combs and Telecommunications Components for the Generation and High-Dimensional Quantum Processing of d-Level Cluster States
Large and complex optical quantum states are a key resource for fundamental science and applications such as quantum communications, information processing, and metrology. In this context, cluster states are a particularly important class because they enable the realization of universal quantum computers by means of the so-called ‘one-way’ scheme, where processing operations are performed through measurements on the state. While two-level (i.e. qubit) cluster states have been realized thus far, further boosting this computational resource by increasing the number of particles comes at the price of significantly reduced coherence time and detection rates, as well as increased sensitivity to …
Universal multipartite d-level entanglement witnesses for realistic measurement settings
Entanglement is an essential resource in quantum information science [1] and its presence in any quantum system can be experimentally detected through entanglement witness operators [2]. In particular, measuring a negative expectation value of a witness with high statistical confidence provides a necessary and sufficient condition to confirm the generation of a genuine multipartite [3] and/or d-level entangled state [4]. In recent years, the experimental generation of complex quantum states has intensified the need for witnesses that are capable of detecting such systems and are experimentally optimal at the same time. This means that the witness should require the least measurement effort …
Antenna Tapering Strategy for Near-Field Enhancement Optimization in Terahertz Gold Nanocavities
Plasmonic nanoantennas (NAs) have received a growing attention in recent years due to their ability to confine light on sub-wavelength dimensions [1]. More recently, this property has been exploited in the terahertz (THz) frequency range (0.1–10 THz) for enhanced sensing and spectroscopy [2], as well as for more fundamental investigations [3]. These applications typically require high local electric fields that can be achieved by concentrating THz radiation into deeply sub-wavelength volumes located at the NAs extremities. However, the achievable near-field enhancement values are severely limited by the poor resonance quality factor of traditional rod-shaped THz NAs. Unlike what is commonly…
Design and Fabrication of Terahertz Bragg Gratings on a Two-Wire Waveguide
In this study, we present the design and the fabrication procedure of waveguide-integrated Bragg Gratings operating at THz frequencies.
High-dimensional one-way quantum processing implemented on d-level cluster states
Taking advantage of quantum mechanics for executing computational tasks faster than classical computers1 or performing measurements with precision exceeding the classical limit2,3 requires the generation of specific large and complex quantum states. In this context, cluster states4 are particularly interesting because they can enable the realization of universal quantum computers by means of a ‘one-way’ scheme5, where processing is performed through measurements6. The generation of cluster states based on sub-systems that have more than two dimensions, d-level cluster states, provides increased quantum resources while keeping the number of parties constant7, and also enables novel algorithm…
Time‐Domain Integration of Broadband Terahertz Pulses in a Tapered Two‐Wire Waveguide
In this work, the time-domain integration of broadband terahertz (THz) pulses via a tapered two-wire waveguide (TTWWG) is reported. Such a guiding structure consists of two metallic wires separated by a variable air gap that shrinks down to a subwavelength size as the movement takes from the waveguide input to its output. It is shown that while an input THz pulse propagates toward the subwavelength output gap, it is reshaped into its first-order time integral waveform. In order to prove the TTWWG time integration functionality, the THz pulse is detected directly within the output gap of the waveguide, so as to prevent the outcoupling diffraction from altering the shape of the time-integrate…
Rotational Doppler Frequency Shift from Time‐Evolving High‐Order Pancharatnam–Berry Phase: A Metasurface Approach
The Doppler frequency shift of sound or electromagnetic waves has been widely investigated in many different contexts and, nowadays, represents a formidable tool in medicine, engineering, astrophysics, and optics. Such effect is commonly described in the framework of the universal energy-momentum conservation law. In particular, the rotational Doppler effect has been recently demonstrated using light carrying orbital angular momentum. When a wave undergoes a cyclic adiabatic transformation of its Hamiltonian, it is known to acquire the so-called Pancharatnam–Berry (PB) phase. In this work, an experimental evidence of the direct connection between the high-order PB phase time evolution on th…
Generation of Structured Light via Nano Structures and Applications
The generation of structured light by means of metasurfaces is presented and the applications in the characterizations of polarization rotation and Pancharatnam-Berry phase are discussed.
Indistinguishability-enhanced entanglement recovery by spatially localized operations and classical communication
We extend a procedure exploiting spatial indistinguishability of identical particles to recover the spoiled entanglement between two qubits interacting with Markovian noisy environments. Here, the spatially localized operations and classical communication (sLOCC) operational framework is used to activate the entanglement restoration from the indistinguishable constituents. We consider the realistic scenario where noise acts for the whole duration of the process. Three standard types of noises are considered: a phase damping, a depolarizing, and an amplitude damping channel. Within this general scenario, we find the entanglement to be restored in an amount proportional to the degree of spati…
High-dimensional one-way quantum processing enabled by optical d-level cluster states
By introducing and modifying two-photon hyper-entangled states in the time-frequency domain using an on-chip micro-cavity, we succeed in generating high-dimensional cluster states, demonstrate d-level measurement-based quantum processing and show the state’s higher noise tolerance.
Arbitrary Phase Access for Stable Fiber Interferometers
Well-controlled yet practical systems that give access to interference effects are critical for established and new functionalities in ultrafast signal processing, quantum photonics, optical coherence characterization, etc. Optical fiber systems constitute a central platform for such technologies. However, harnessing optical interference in a versatile and stable manner remains technologically costly and challenging. Here, degrees of freedom native to optical fibers, i.e., polarization and frequency, are used to demonstrate an easily deployable technique for the retrieval and stabilization of the relative phase in fiber interferometric systems. The scheme gives access (without intricate dev…
Framework for complex quantum state generation and coherent control based on on-chip frequency combs
Integrated frequency combs introduce a scalable framework for the generation and manipulation of complex quantum states (including multi-photon and high-dimensional states), using only standard silicon chip and fiber telecommunications components.
Quantumness and speedup limit of a qubit under transition frequency modulation
Controlling and maintaining quantum properties of an open quantum system along its evolution is essential for both fundamental and technological aims. We assess the capability of a frequency-modulated qubit embedded in a leaky cavity to exhibit enhancement of its dynamical quantum features. The qubit transition frequency is sinusoidally modulated by an external driving field. We show that a properly optimized quantum witness effectively identifies quantum coherence protection due to frequency modulation while a standard quantum witness fails. We also find an evolution speedup of the qubit through proper manipulation of the modulation parameters of the driving field. Importantly, by introduc…
Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling
We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the c…
Time-Domain Integration of Terahertz pulses
We report on the time-domain integration of terahertz pulses obtained via the tight confinement of the radiation in a tapered two-wire waveguide. Both simulation and experimental results prove the time integration capability of this structure.
Nonlinear Disorder Mapping Through Three-Wave Mixing
We implement a simple and powerful approach to characterize the domain distribution in the bulk of quadratic ferroelectric crystals via far-field second-harmonic spectroscopy. The approach is demonstrated in a lithium tantalate sample with periodic electric field poling and random mark-to-space ratio.
Exact reconstruction of thz sub-λ source features in knife-edge measurements
The spatial features of a sub-wavelength terahertz source are not accessible using time-integrated knife-edge techniques due to the non-separable space-time nature of the radiated field and to systematic modifications induced by the blade itself. We show that combining knife-edge with a time resolved electro-optical sampling, the space-time coupling can be addressed and the source field profile can be exactly reconstructed.
Universal N -Partite d -Level Pure-State Entanglement Witness Based on Realistic Measurement Settings
Entanglement witnesses are operators that are crucial for confirming the generation of specific quantum systems, such as multipartite and high-dimensional states. For this reason, many witnesses have been theoretically derived which commonly focus on establishing tight bounds and exhibit mathematical compactness as well as symmetry properties similar to that of the quantum state. However, for increasingly complex quantum systems, established witnesses have lacked experimental achievability, as it has become progressively more challenging to design the corresponding experiments. Here, we present a universal approach to derive entanglement witnesses that are capable of detecting the presence …
Hyper-Entanglement in Time and Frequency
Hyper-entanglement, i.e. entanglement in more than one degree of freedom, enables a multiplicative increase in Hilbert space size. Such systems can be treated as multi-partite even though the number of state particles is not increased, making them highly attractive for applications in high-capacity quantum communications and information processing [1]. Until now, such states have been realized only using combinations of fully independent degrees of freedom, described by commuting operators, such as polarization and optical paths. Time and frequency, in turn, are linked and described by non-commuting operators. Here, using two discrete forms of energy-time entanglement we demonstrate that ti…
Optical d-level frequency-time-based cluster states
Cluster states, a specific class of multi-partite entangled states, are of particular importance for quantum science, as such systems are equivalent to the realization of one-way (or measurement-based) quantum computers [1]. In this scheme, algorithms are implemented through high-fidelity measurements on the parties of the state [2]. While two-level (i.e. qubit) cluster states have been realized so far, increasing the number of particles to boost the computational resource comes at the price of significantly reduced coherence time and detection rates, as well as increased sensitivity to noise, restricting the realization of discrete cluster states to a record of eight qubits. In contrast, t…
Broadband Second-Harmonic Generation via Random Quasi-Phase-Matching in PPLT
We demonstrated broadband second-harmonic generation via random Quasi-Phase-Matching in periodically poled Lithium Tantalate.
Complex quantum state generation and coherent control based on integrated frequency combs
The investigation of integrated frequency comb sources characterized by equidistant spectral modes was initially driven by considerations towards classical applications, seeking a more practical and miniaturized way to generate stable broadband sources of light. Recently, in the context of scaling the complexity of optical quantum circuits, these on-chip approaches have provided a new framework to address the challenges associated with non-classical state generation and manipulation. For example, multi-photon and high-dimensional states were to date either inaccessible, lacked scalability, or were difficult to manipulate, requiring elaborate approaches. The emerging field of quantum frequen…
Integrated generation of complex optical quantum states and their coherent control
Complex optical quantum states based on entangled photons are essential for investigations of fundamental physics and are the heart of applications in quantum information science. Recently, integrated photonics has become a leading platform for the compact, cost-efficient, and stable generation and processing of optical quantum states. However, onchip sources are currently limited to basic two-dimensional (qubit) two-photon states, whereas scaling the state complexity requires access to states composed of several (<2) photons and/or exhibiting high photon dimensionality. Here we show that the use of integrated frequency combs (on-chip light sources with a broad spectrum of evenly-spaced fre…
Nonlinear Disorder Mapping via Wave Mixing in poled Lithium Tantalate
We introduce and test a simple approach for the characterization of domain distribution in bulk quadratic ferroelectric crystals, specifically periodically poled Lithium Tantalate with random mark-to space ratio.
Affordable, ultra-broadband coherent detection of terahertz pulses via CMOS-compatible solid-state devices
We demonstrate the first fully solid-state technique for the coherent detection of ultra-broadband THz pulses (0.1-10 THz), relying on the electric-field-induced second-harmonic generation attained in integrated CMOS-compatible devices.
Fiber Interferometers for Time-domain Quantum Optics
A novel method for stabilizing fiber interferometers based on frequency- and polarization-multiplexing enables unambiguous phase retrieval, long-term stability, and phase-independent performance. These capabilities allow for precise manipulation of time-bin quantum states in a low-complexity setup.
Observation of collapse arrest in pure kerr media sustained by a parametric interaction
We demonstrate a parametric interaction based on four wave mixing that can arrest the collapse and stabilize solitary propagation in a pure Kerr material by controlling the wavelength of the interacting beams.
Space-time features of THz emission from optical rectification in sub-wavelength areas
We present our investigation on the THz space-time emission characteristic induced by the non-paraxial generation regime in highly localized THz generation via optical rectification on sub-wavelength areas.
Memory Effects in High-Dimensional Systems Faithfully Identified by Hilbert–Schmidt Speed-Based Witness
A witness of non-Markovianity based on the Hilbert–Schmidt speed (HSS), a special type of quantum statistical speed, has been recently introduced for low-dimensional quantum systems. Such a non-Markovianity witness is particularly useful, being easily computable since no diagonalization of the system density matrix is required. We investigate the sensitivity of this HSS-based witness to detect non-Markovianity in various high-dimensional and multipartite open quantum systems with finite Hilbert spaces. We find that the time behaviors of the HSS-based witness are always in agreement with those of quantum negativity or quantum correlation measure. These results show that the HSS-based witness…
Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability
Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose–Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the u…
Asymmetric Dual-Grating Micro-Slit Configuration for Broadband Solid State Coherent Detection of THz Pulses
We demonstrated solid-state broadband coherent Terahertz characterization based on the Terahertz Field Induced Second Harmonic effect in Silica. The THz detector consists of an asymmetric micro-slit array which can be operated at 200V applied bias.
Silicon nitride-based deep sub-λ slit for ultra-broadband THz coherent detection
We report on the characterization of a new type of CMOS-compatible device for terahertz solid-state biased coherent detection, which relies on a 1-µm-wide metallic slit embedded in a thin film of PECVD-grown silicon nitride.
Counter-propagating frequency mixing with Terahertz waves in diamond
Frequency conversion by means of Kerr nonlinearity is one of the most common and exploited nonlinear optical processes in the UV, visible, IR, and mid-IR spectral regions. Here we show that wave mixing of an optical field and a terahertz wave can be achieved in diamond, resulting in the frequency conversion of the terahertz radiation either by sum- or difference-frequency generation. In the latter case, we show that this process is phase matched and most efficient in a counterpropagating geometry.
On-chip entangled D-level photon states – scalable generation and coherent processing
Exploiting a micro-cavity-based quantum frequency comb, we demonstrate the on-chip generation of high-dimensional entangled quantum states with a Hilbert-space dimensionality larger than 100, and introduce a coherent control approach relying on standard telecommunications components.
Improving nanoscale terahertz field localization by means of sharply tapered resonant nanoantennas
Abstract Terahertz resonant nanoantennas have recently become a key tool to investigate otherwise inaccessible interactions of such long-wavelength radiation with nano-matter. Because of their high-aspect-ratio rod-shaped geometry, resonant nanoantennas suffer from severe loss, which ultimately limits their field localization performance. Here we show, via a quasi-analytical model, numerical simulations, and experimental evidence, that a proper tapering of such nanostructures relaxes their overall loss, leading to an augmented local field enhancement and a significantly reduced resonator mode volume. Our findings, which can also be extended to more complex geometries and higher frequencies,…
A wideband THz Time Domain Spectroscopy table-top system based on ultrafast pulsed laser: Model and experiments
We present an analytical model carefully describing the time-frequency behavior of all the stages composing our whole Terahertz Time Domain Spectroscopy laser based system, from the THz pulses generation via Optical Rectification, to their detection through Electro-Optic Sampling technique, by way of diffraction, collecting and focusing effects. In order to prove the effectiveness of our work, we report on the comparison among the experimental waveforms and the simulation results.
Scalable on-chip generation and coherent control of complex optical quantum states
Integrated quantum frequency combs provide access to multi-photon and high-dimensional entangled states, and their control via standard telecommunications components, and can thus open paths for reaching the state complexities required for meaningful quantum information science.
Spatio-temporal Characteristics of THz Emission at the Subwavelength Scale via Optical Rectification
Highly localized THz emission via optical rectification in thin nonlinear crystals is a promising method for subwavelength microscopy. We present here the peculiar THz spatio-temporal characteristics induced by the non-paraxial generation regime.
Tapered Two-Wire Waveguide for Time-Domain Integration of Broadband Terahertz Pulses
We show the time-domain integration of terahertz pulses achieved in a sub-wavelength, tapered two-wire waveguide. Both simulation and experimental results prove the time integration functionality of this waveguide topology.
Spatial and spectral properties of small area THz generation for sub-wavelength microscopy
A highly localized THz source is a promising candidate for sub-wavelength microscopy, due to its superior radiation power throughput with respect to others near-field techniques. Here, we report on the spatial and the spectral near-field properties of our highly localized THz source.
On-chip quantum optical frequency comb sources
Integrated optical frequency comb sources, based on nonlinear microring resonators, can be used to generate complex quantum states. In particular, we achieved multi-photon and high-dimensional entangled quantum states, as well as their coherent control.
Ultra-broadband terahertz time domain spectroscopy by Solid State Biased Coherent Detection
The spectral fingerprint of ibuprofen within the THz frequency window has been retrieved through an ultra-broadband THz Time Domain Spectrometry set-up. The latter implements the Solid State Biased Coherent Detection scheme, based on a compact CMOS-compatible integrated device. Such a technique shows unprecedented advantages in term of bandwidth (greater than 10 THz) over other solid state methods like electro-optic sampling.
Unambiguous phase retrieval in fiber-based interferometers
A scheme for fiber interferometers, exploiting frequency-multiplexing in orthogonal fiber polarization modes, enables unambiguous phase retrieval. This allows for arbitrary phase tuning, providing a precise tool for time-bin qubit manipulation.
Designing time and frequency entanglement for generation of high-dimensional photon cluster states
The development of quantum technologies for quantum information science demands the realization and precise control of complex (multipartite and high dimensional) entangled systems on practical and scalable platforms. Quantum frequency combs (QFCs) generated via spontaneous four-wave mixing in integrated microring resonators represent a powerful tool towards this goal. They enable the generation of complex photon states within a single spatial mode as well as their manipulation using standard fiber-based telecommunication components. Here, we review recent progress in the development of QFCs, with a focus on our results that highlight their importance for the realization of complex quantum …
Counter-propagating difference-frequency generation in diamond with terahertz fields
The nonlinear interaction of terahertz (THz) pulses with optical fields in Kerr, gaseous media is a key ingredient for broadband THz detection schemes [1]. Terahertz field-induced second harmonic generation in solid-state media has also been considered for THz detection and as a tool e.g. for liquid dynamics investigations [2,3], while four-wave mixing has been addressed as a possible mechanism for THz generation [4,5]. © 2013 IEEE.
Entanglement robustness via spatial deformation of identical particle wave functions
We address the problem of entanglement protection against surrounding noise by a procedure suitably exploiting spatial indistinguishability of identical subsystems. To this purpose, we take two initially separated and entangled identical qubits interacting with two independent noisy environments. Three typical models of environments are considered: amplitude damping channel, phase damping channel and depolarizing channel. After the interaction, we deform the wave functions of the two qubits to make them spatially overlap before performing spatially localized operations and classical communication (sLOCC) and eventually computing the entanglement of the resulting state. This way, we show tha…
Versatile metal-wire waveguides for broadband terahertz signal processing and multiplexing.
AbstractWaveguides play a pivotal role in the full deployment of terahertz communication systems. Besides signal transporting, innovative terahertz waveguides are required to provide versatile signal-processing functionalities. Despite fundamental components, such as Bragg gratings, have been recently realized, they typically rely on complex hybridization, in turn making it extremely challenging to go beyond the most elementary functions. Here, we propose a universal approach, in which multiscale-structured Bragg gratings can be directly etched on metal-wires. Such an approach, in combination with diverse waveguide designs, allows for the realization of a unique platform with remarkable str…
Nonlinear Disorder Mapping via Three Wave Mixing in Poled Lithium Tantalate
We introduce and test a simple approach for the characterization of domain distribution in bulk quadratic ferroelectric crystals, such as periodically poled Lithium Tantalate with random mark-to space ratio.
Integrated Generation of High-dimensional Entangled Photon States and Their Coherent Control
Exploiting a frequency-domain approach, we demonstrate the generation of high-dimensional entangled quantum states with a Hilbert-space dimensionality larger than 100 from an on-chip nonlinear microcavity, and introduce a coherent control platform using standard telecommunications components.
On-chip quantum frequency combs for complex photon state generation (Conference Presentation)
A key challenge in today’s quantum science is the realization of large-scale complex non-classical systems to enable e.g. ultra-secure communications, quantum-enhanced measurements, and computations faster than classical approaches. Optical frequency combs represent a powerful approach towards this, since they provide a very high number of temporal and frequency modes which can result in large-scale quantum systems. Here, we discuss the recent progress on the realization of integrated quantum frequency combs and reveal how their use in combination with on-chip and fiber-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capa…
Practical system for the generation of pulsed quantum frequency combs
The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon…