0000000000073289
AUTHOR
Jean-françois Cavin
Effect of pHand age of culture on cellular fatty acid composition of Leuconostoc oenos
Z. DRICI-CACHON, J.F. CAVIN AND C. DIVIES. 1996. This study is concerned with the fatty acid composition of three strains of Leuconostoc oenos grown at different pH. The most abundant fatty acids were C18: 1w9, C19: 0 cy(w9,10) and C16:0, followed by C16: 1w9 and C14: 0. The pH considerably modified the fatty acid distribution in Lo107 (an acidophilic strain) and Lo8413 (a moderately acidophilic strain). However, moderate changes occurred for LoATCC 23277 (a less acidophilic strain). At pH 2.9, Lo107 has a remarkably high level of C19: 0 cy-(w9,10) and C19:0 cy(w11,12). Proportions of C18: 1 and C19:0 cyclo acids varied mainly with the pH of the medium and also as a function of growth phase…
Cloning and expression of genes involved in conidiation and surface properties of Penicillium camemberti grown in liquid and solid cultures.
International audience; Based on bioinformatic data on model fungi, the rodA and wetA genes encoding, respectively, a RodA hydrophobin protein and the WetA protein involved in conidiation mechanisms, were PCR-cloned and characterized for the first time in Penicillium camemberti. These results, completed by a sequence of the brlA gene (available in GenBank), which encodes a major transcriptional regulator also involved in the conidiation mechanism, were used to compare, by qRT-PCR, the expression of the three genes in liquid and solid cultures in a synthetic medium. While expression of the brlA and wetA genes increased dramatically in both culture conditions after 4 days of growth, expressio…
Molecular characterization of the phenolic acid metabolism in the lactic acid bacteria Lactobacillus plantarum
The lactic acid bacteria Lactobacillus plantarumdisplays substrate-inducible decar- boxylase activities on p-coumaric, caffeic and ferulic acids. Purification of the p-coumaric acid decarboxylase (PDC) was performed. Sequence of the N-terminal part of the PDC led to the cloning of the corresponding pdc gene. Expression of this gene in Escherichia colirevealed that PDC displayed a weak activity on ferulic acid, detectable in vitro in the presence of ammonium sulfate. Transcrip- tional studies of this gene in L. plantarum demonstrated that the pdc transcription is phenolic acid- dependent. A mutant deficient in the PDC activity, designated LPD1, was constructed to study phe- nolic acid altern…
Identification and expression of Lactobacillus paracasei genes for adaptation to desiccation and rehydration
AbstractLactobacillus paracaseiis able to persist in a variety of natural and technological environments despite physico-chemical perturbations, in particular alternations between desiccation and rehydration. However, the way in which it adapts to hydric fluctuations and in particular the genetic determinants involved are not clearly understood. To identify the genes involved in adaptation to desiccation, an annotated library ofL. paracaseirandom transposon mutants was screened for viability after desiccation (25% relative humidity, 25°C). Subsequently, the expression of the identified genes was measured at five stages of the dehydration-rehydration process to formulate the chronology of ge…
Inducible metabolism of phenolic acids in Pediococcus pentosaceus is encoded by an autoregulated operon which involves a new class of negative transcriptional regulator.
ABSTRACTPediococcus pentosaceusdisplays a substrate-inducible phenolic acid decarboxylase (PAD) activity onp-coumaric acid. Based on DNA sequence homologies between the three PADs previously cloned, a DNA probe of theLactobacillus plantarum pdcgene was used to screen aP. pentosaceusgenomic library in order to clone the corresponding gene of this bacteria. One clone detected with this probe displayed a low PAD activity. Subcloning of this plasmid insertion allowed us to determine the part of the insert which contains a 534-bp open reading frame (ORF) coding for a 178-amino-acid protein presenting 81.5% of identity withL. plantarumPDC enzyme. This ORF was identified as thepadAgene. A second O…
Acid tolerance inLeuconostoc oenos. Isolation and characterization of an acid-resistant mutant
The acid tolerance ofLeuconostoc oenos was examined in cells surviving at pH 2.6, which is lower than the acid limit of growth (about pH 3.0). Acid-adapted cells survived better than non-adapted cells. Tolerance to acid stress was found to be dependent upon the adaptive pH. Acid resistance was increased by an order of magnitude for cultures adapted to a pH of about 2.9. Inhibiting protein synthesis with chloramphenicol prior to acid shock revealed that acid adaptation may involve two separate systems, one of which appears to be independent of protein synthesis. The acid-resistant mutant LoV8413, isolated during a long-term survival screen at pH 2.6, was found to be able to grow in acidic me…
Phenolic Acid-Mediated Regulation of the padC Gene, Encoding the Phenolic Acid Decarboxylase of Bacillus subtilis
ABSTRACT In Bacillus subtilis , several phenolic acids specifically induce expression of padC , encoding a phenolic acid decarboxylase that converts these antimicrobial compounds into vinyl derivatives. padC forms an operon with a putative coding sequence of unknown function, yveFG , and this coding sequence does not appear to be involved in the phenolic acid stress response (PASR). To identify putative regulators involved in the PASR, random transposon mutagenesis, combined with two different screens, was performed. PadR, a negative transcriptional regulator of padC expression, was identified. padR is not located in the vicinity of padC , and the expression of padR is low and appears const…
Cloning and sequencing of the gene encoding α-acetolactate decarboxylase fromLeuconostoc oenos
The alsD gene encoding alpha-acetolactate decarboxylase was isolated from a genomic library of Leuconostoc oenos, using a screening procedure developed on microtiter plates. The nucleotide sequence of alsD encodes a putative protein of 239 amino acids showing significant similarity with other bacterial alpha-acetolactate decarboxylases. Upstream from alsD lies an open reading frame (alsS) which is highly similar to bacterial genes coding for catabolic alpha-acetolactate synthases. Northern (RNA) blotting analyses indicated the presence of a 2.4-kb dicistronic transcript of alsS and alsD. This suggests that the alsS and alsD genes are organized in a single operon.
The proteome and transcriptome analysis ofBacillus subtilis in response to salicylic acid
Phenolic acids that are present in plant-soil ecosystems can be considered as toxins which induce specific stress responses in microorganisms. In this paper, we have analyzed the global response of the soil bacterium Bacillus subtilis to salicylic acid using proteomics and transcriptomics. The results demonstrate that salicylic acid caused predominantly the induction of the SigmaB-dependent general stress response in B. subtilis which is not related to the acidic conditions. Treatment of B. subtilis with growth-inhibitory concentrations of 4 mM salicylic acid caused protein damage in B. subtilis as reflected by the induction of the CtsR and Spx regulons. Both phenolic acid decarboxylases (p…
Inactivation of PadR, the repressor of the phenolic acid stress response, by molecular interaction with Usp1, a universal stress protein from Lactobacillus plantarum, in Escherichia coli
ABSTRACT The phenolic acid decarboxylase gene padA is involved in the phenolic acid stress response (PASR) in gram-positive bacteria. In Lactobacillus plantarum , the padR gene encodes the negative transcriptional regulator of padA and is cotranscribed with a downstream gene, usp1 , which encodes a putative universal stress protein (USP), Usp1, of unknown function. The usp1 gene is overexpressed during the PASR. However, the role and the mechanism of action of the USPs are unknown in gram-positive bacteria. Therefore, to gain insights into the role of USPs in the PASR; (i) a usp1 deletion mutant was constructed; (ii) the two genes padR and usp1 were coexpressed with padA under its own promo…
Identification and transcriptional profile of Lactobacillus paracasei genes involved in the response to desiccation and rehydration
International audience; Lactobacillus paracasei is able to persist in a variety of natural and technological environments despite physico-chemical perturbations, in particular alternations between desiccation and rehydration. However, the way in which it adapts to hydric fluctuations and the genetic determinants involved are not clearly understood. To identify the genes involved in adaptation to desiccation, an annotated library of L. paracasei random transposon mutants was screened for viability after desiccation (25% relative humidity, 25 °C). We found 16 genes that have not been described as being involved in this response. Most of them are linked to either the transport of molecules or …
Induction of stress proteins inLeuconostoc oenos to perform direct inoculation of wine
The enhancement or induction of the protein synthesis was clearly observed in cells ofL. oenos labeled with35S for five proteins during heat shock at 42°C and acid shock at pH 3. Furthermore, no stress protein was induced after exposure ofL. oenos to ethanol shock 10% (v/v). Moreover, survival ofL. oenos in wine and ability to perform alolactic fermentation was improved after direct inoculation when cells were pretreated at 42°C.
Epidemiological analysis of Salmonella enterica from beef sampled in the slaughterhouse and retailers in Dakar (Senegal) using pulsed-field gel electrophoresis and antibiotic susceptibility testing
Seventy-eight isolates of Salmonella spp. isolated from beef sampled from the official city slaughterhouse and from retailers in Dakar, Senegal were analyzed using serotyping, antimicrobial testing and macrorestriction profiling by Pulsed-Field Gel Electrophoresis (PFGE). These analyses were done to identify clonal relationships and potential transmission routes in beef channel. XbaI macrorestriction allowed defining 17 genotypes among the six main analyzed serotypes: Salmonella bredeney (3 genotypes), S. muenster (6), S. waycross (1), S. corvallis (3), S. kentucky (1) and S. brandenburg (3). The cross analysis of PFGE profiles and origin of the beef samples reveals a wide range of contamin…
Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization
By using degenerate primers designed from the first 19 N-terminal amino acids of Lactobacillus plantarum p-coumaric acid decarboxylase (PDC), a 56-bp fragment was amplified from L. plantarum in PCRs and used as a probe for screening an L. plantarum genomic bank. Of the 2,880 clones in the genomic bank, one was isolated by colony hybridization and contained a 519-bp open reading frame (pdc gene) followed by a putative terminator structure. The pdc gene is expressed on a monocistronic transcriptional unit, which is transcribed from promoter sequences homologous to Lactococcus promoter sequences. No mRNA from pdc and no PDC activity were detected in uninduced cell extracts, indicating that the…
Prevalence and antibiotic-resistance of Salmonella isolated from beef sampled from the slaughterhouse and from retailers in Dakar (Senegal)
A study was made of Salmonella contamination in beef sampled from a slaughterhouse and from retailers in Dakar, Senegal. The serotypes as well as antibiotic-resistance patterns of the Salmonella isolates were determined. A total of 435 meat samples (236 from the slaughterhouse, 199 from retailers) were tested. Among them, 275 (63%) were positive for Salmonella, 43% (101/236) from the slaughterhouse and 87% (174/199) from the retailers. Furthermore, 97% of the investigated retailers had at least one beef sample contaminated by Salmonella. The 286 Salmonella isolates were divided into 51 serotypes. The most prevalent serotypes were Salmonella bredeney (25%), S. muenster (8%), S. waycross (7%)…
Medium for Screening Leuconostoc oenos Strains Defective in Malolactic Fermentation
A new sensitive medium was developed to screen and isolate mutagenic Leuconostoc oenos strains defective in malolactic fermentation. The essential components of the medium included fructose (22 mM), l -malic acid (74.6 mM), bromocresol green (as pH indicator), and cellulose powder. The wild-type colonies turned blue, but defective malolactic colonies gave an acid reaction and remained yellow-green.
Functional genomics of Lactobacillus casei establishment in the gut
International audience; Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in…
Study of the cwaRS-ldcA Operon Coding a Two-Component System and a Putative L,D-Carboxypeptidase in Lactobacillus paracasei
International audience; The cell surface is the primary recognition site between the bacterium and the host. An operon of three genes, LSEI_0219 (cwaR), LSEI_0220 (cwaS), and LSEI_0221 (ldcA), has been previously identified as required for the establishment of Lactobacillus paracasei in the gut. The genes cwaR and cwaS encode a predicted two-component system (TCS) and ldcA a predicted D-alanyl-D-alanine carboxypeptidase which is a peptidoglycan (PG) biosynthesis enzyme. We explored the functionality and the physiological role of these three genes, particularly their impact on the bacterial cell wall architecture and on the bacterial adaptation to environmental perturbations in the gut. The …
Rapid 96-well plates DNA extraction and sequencing procedures to identify genome-wide transposon insertion sites in a difficult to lyse bacterium: Lactobacillus casei
International audience; Random transposon mutagenesis followed by adequate screening methods is an unavoidable procedure to characterize genetics of bacterial adaptation to environmental changes. We have recently constructed a mutant library of Lactobacillus casei and we aimed to fully annotate it. However, we have observed that, for L. casei which is a difficult to lyse bacterium, methods used to identify the transposon insertion site in a few mutants (transposon rescue by restriction and recircularization or PCR-based methods) were not transposable for a larger number because they are too time-consuming and sometimes not reliable. Here, we describe a method for large-scale and reliable id…
Kinetics and Intensity of the Expression of Genes Involved in the Stress Response Tightly Induced by Phenolic Acids in <i>Lactobacillus plantarum</i>
In <i>Lactobacillus plantarum</i>, PadR, the negative transcriptional regulator of <i>padA </i>encoding the phenolic acid decarboxylase, is divergently oriented from <i>padA. </i>Moreover, it forms an operonic structure with <i>usp1,</i> a genewhose products display homology with proteins belonging to the UspA family of universal stress proteins. PadR is inactivated by the addition of <i>p-</i>coumaric, ferulic or caffeic acid to the culture medium. In order to better characterize the stress response of this bacterium to phenolic acids, we report here the kinetics and quantitative expression by qRT-PCR of the 3 genes from the <i…
Genetic and Biochemical Analysis of PadR-padC Promoter Interactions during the Phenolic Acid Stress Response in Bacillus subtilis 168
ABSTRACT Bacillus subtilis 168 is resistant to phenolic acids by expression of an inducible enzyme, the phenolic acid decarboxylase (PadC), that decarboxylates these acids into less toxic vinyl derivatives. In the phenolic acid stress response (PASR), the repressor of padC , PadR, is inactivated by these acids. Inactivation of PadR is followed by a strong expression of padC . To elucidate the functional interaction between PadR and the padC promoter, we performed (i) footprinting assays to identify the region protected by PadR, (ii) electrophoretic mobility shift assays (EMSAs) with a modified padC promoter protected region to determine the interacting sequences, and (iii) random mutagenesi…
Identification of Critical Genes for Growth in Olive Brine by Transposon Mutagenesis of Lactobacillus pentosus C11
ABSTRACT Olive brine represents a stressful environment due to the high NaCl concentration, presence of phenolic compounds known as antimicrobials, and low availability of nutrients. Thus, only a few strains of lactic acid bacteria (LAB) are adapted to grow in and ferment table olives. To identify the mechanisms by which these few strains are able to grow in olive brine, Lactobacillus pentosus C11, a particularly resistant strain isolated from naturally fermented table olives, was mutagenized by random transposition using the P junc -TpaseIS 1223 system (H. Licandro-Seraut, S. Brinster, M. van de Guchte, H. Scornec, E. Maguin, P. Sansonetti, J. F. Cavin, and P. Serror, Appl. Environ. Microb…
Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of Lactobacillus plantarum.
ABSTRACTLactobacillus plantarumdisplays a substrate-induciblepadAgene encoding a phenolic acid decarboxylase enzyme (PadA) that is considered a specific chemical stress response to the inducing substrate. The putative regulator ofpadAwas located in thepadAlocus based on its 52% identity with PadR, thepadAgene transcriptional regulator ofPediococcus pentosaceus(L. Barthelmebs, B. Lecomte, C. Diviès, and J.-F. Cavin, J. Bacteriol.182:6724-6731, 2000). Deletion of theL. plantarum padRgene clearly demonstrates that the protein it encodes is the transcriptional repressor of divergently orientedpadA. ThepadRgene is cotranscribed with a downstream open reading frame (ORF1), the product of which m…
Theme 4: Immobilized Cell Technology in Wine Production
AbstractIn spite of its traditional nature, wine making is largely concerned with the progress of biotechnology. High cell density reactors have potential for enology: improved performance of alcoholic and malolactic fermentations, smaller scale fermentation facilities, adaptation to continuous processes. Among the immobilization techniques, cell entrapment in alginate beads seems to be an impressive one. Alcoholic fermentation of wine, malolactic fermentation, bottle fermentation known as “Methode champenoise” and sparkling wine are among the industrial applications. Knowledge of kinetics and physiology in microorganisms in heterogeneous media has expanded in the last few years. The use of…
New Genes Involved in Mild Stress Response Identified by Transposon Mutagenesis in Lactobacillus paracasei
International audience; Lactic acid bacteria (LAB) are associated with various plant, animal, and human niches and are also present in many fermented foods and beverages. Thus, they are subjected to several stress conditions and have developed advanced response mechanisms to resist, adapt, and grow. This work aimed to identify the genes involved in some stress adaptation mechanisms in LAB. For this purpose, global reverse genetics was applied by screening a library of 1287 Lactobacillus paracasei transposon mutants for mild monofactorial stresses. This library was submitted independently to heat (52 degrees C, 30 min), ethanol (170 g.L-1, 30 min), salt (NaCl 0.8 M, 24 h), acid (pH 4.5, 24 h…
Cloning of branched chain amino acid biosynthesis genes and assays of alpha-acetolactate synthase activities in Leuconostoc mesenteroides subsp. cremoris.
Abstract A genomic library from Leuconostoc mesenteroides subsp. cremoris (Lmc) in Escherichia coli was screened for α-acetolactate synthase (ALS) activity using a phenotypic test detecting the production of acetolactate or related C 4 derivatives (diacetyl, acetoin or 2,3-butanediol) in the culture. Four recombinant E. coli clones, with plasmids containing overlapping DNA fragments and displaying anabolic ALS activity, were selected. This activity is encoded by an ilvB gene belonging to a putative operon which contains genes highly similar to the genes of the branched chain amino acid (BCAA) operon of Lactococcus lactis subsp. lactis. This putative BCAA operon is not functional as the ilvA…
Expression in Escherichia coli of Native and Chimeric Phenolic Acid Decarboxylases with Modified Enzymatic Activities and Method for Screening Recombinant E. coli Strains Expressing These Enzymes
ABSTRACT Four bacterial phenolic acid decarboxylases (PAD) from Lactobacillus plantarum , Pediococcus pentosaceus , Bacillus subtilis , and Bacillus pumilus were expressed in Escherichia coli , and their activities on p -coumaric, ferulic, and caffeic acids were compared. Although these four enzymes displayed 61% amino acid sequence identity, they exhibit different activities for ferulic and caffeic acid metabolism. To elucidate the domain(s) that determines these differences, chimeric PAD proteins were constructed and expressed in E. coli by exchanging their individual carboxy-terminal portions. Analysis of the chimeric enzyme activities suggests that the C-terminal region may be involved …
Purification and characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum
Abstract Lactobacillus plantarum cells displayed substrate-inducible decarboxylase activities on p-coumaric and ferulic acids of 0.6 and 0.01 μmol min−1 mg−1, respectively. Activity in uninduced cells or corresponding cell extracts was undetectable (
Development of an Efficient In Vivo System (P-junc-TpaseIS(1223)) for Random Transposon Mutagenesis of Lactobacillus casei
ABSTRACT The random transposon mutagenesis system P junc -TpaseIS 1223 is composed of plasmids pVI129, expressing IS 1223 transposase, and pVI110, a suicide transposon plasmid carrying the P junc sequence, the substrate of the IS 1223 transposase. This system is particularly efficient in Lactobacillus casei , as more than 10,000 stable, random mutants were routinely obtained via electroporation.
Knockout of thep-Coumarate Decarboxylase Gene fromLactobacillus plantarumReveals the Existence of Two Other Inducible Enzymatic Activities Involved in Phenolic Acid Metabolism
ABSTRACTLactobacillus plantarumNC8 contains apdcgene coding forp-coumaric acid decarboxylase activity (PDC). A food grade mutant, designated LPD1, in which the chromosomalpdcgene was replaced with the deletedpdcgene copy, was obtained by a two-step homologous recombination process using an unstable replicative vector. The LPD1 mutant strain remained able to weakly metabolizep-coumaric and ferulic acids into vinyl derivatives or into substituted phenyl propionic acids. We have shown thatL. plantarumhas a second acid phenol decarboxylase enzyme, better induced with ferulic acid than withp-coumaric acid, which also displays inducible acid phenol reductase activity that is mostly active when gl…