Evidence of the Facile Hydride and Enolate Addition to the Imine Bond of an Aluminum−Salophen Complex
The isolation of complexes 2 and 3, unambiguously characterized by single-crystal X-ray diffraction, demonstrates that nucleophilic additions to the aluminum-coordinated imino bond of salophen complex 1 can be achieved under very mild conditions.
Mixed valence mono- and hetero-metallic grid catenanes
Multicomponent self-assembly was employed to obtain, in the solid state, a series of mixed valence mono- and hetero-metallic grid catenanes, which were characterized by single crystal X-ray diffraction.
Ion Pair Recognition of Quaternary Ammonium and Iminium Salts by Uranyl-Salophen Compounds in Solution and in the Solid State
Efficient ditopic receptors for quaternary ammonium and iminium salts have been obtained upon functionalization of the uranyl-salophen unit with conformationally flexible side arms bearing phenyl or beta-naphthyl substituents. Binding affinities in chloroform solution have been measured for a large number of quaternary salts comprising tetramethylammonium (TMA), tetrabutylammonium (TBA), acetylcholine (ACh), N-methylpyridinium (NMP), and N-methylisoquinolinium (NmiQ) cations. Recognition of the anion partner is ensured by coordination to the hard Lewis acidic uranyl center, whereas cation-pi/CH-pi interactions of the quaternary ions are established with the aromatic pendants. The role of th…
Metallogel formation in aqueous DMSO by perfluoroalkyl decorated terpyridine ligands.
Terpyridine based ligands 1 and 2, decorated with a C8F17 perfluorinated tag, are able to form stable thermoreversible gels in the presence of several d-block metal chloride salts. The gel systems obtained have been characterized by NMR, X-ray diffraction, electron microscopies and Tgel experiments in order to gain insights into the observed different behaviour of the two similar ligands, also in terms of the effect of additional common anionic species. peerReviewed
Entrapment of a linear water pentamer into a uranyl-salophen dimer in the solid state
In the solid state, uranyl-salophen complex 1, decorated with bipyridyl sidearms, self-assembles from moist acetonitrile into dimeric species displaying a confined water pentamer, as observed by X-ray diffraction on single crystals. The linear water cluster is incarcerated within the dimeric cavity by coordination to the Lewis acidic uranyl centres and by a network of hydrogen bonds established with the pyridinic nitrogen atoms on the sidearms.
Recognition of alkali metal halide contact ion pairs by uranyl-salophen receptors bearing aromatic sidearms. The role of cation-pi interactions.
Hard anions have long been known to bind strongly to the uranium of uranyl-salophen complexes. Upon functionalization of the salophen framework with one or two benzyloxy substituents, efficient ditopic receptors for alkali metal ions are obtained. The solid-state structures of complexes formed by the two-armed receptor 1 with CsF and with the chlorides of K+, Rb+, and Cs+ reported here reveal the existence of dimeric supramolecular assemblies in which two receptor units assemble into capsules fully enclosing (MX)2 ion quartets. In addition to the strong coordinative binding of the anion to the uranyl center and to electrostatic cation-anion interactions, stabilizing interactions arise from …
Entrapment of a linear water pentamer into a uranyl-salophen dimer in the solid state
In the solid state, uranyl-salophen complex 1, decorated with bipyridyl sidearms, self-assembles from moist acetonitrile into dimeric species displaying a confined water pentamer, as observed by X-...
Recognition of Li+ by a Salophen−UO2 Homodimeric Complex
Self-assembly via mutual U-coordination of the salophen-UO(2) complex 1 creates a dimeric species which is shown to be useful for metal binding. Indeed, the 1 dimer has affinity for alkali metal cations and, interestingly, a marked selectivity for Li(+), determined by electrospray ionization mass spectrometry and (1)H NMR techniques. X-ray diffraction helped in the elucidation of the dimeric complex structure, which presents a crown-ether-type coordination site, in analogy to the more familiar 12-crown-4, responsible for the metal interaction. Comparison with isomer 2, and the salen derivative 3, increases the understanding of the behavior of such systems in solution and in the solid state.
Entrapment of a linear water pentamer into a uranyl-salophen dimer in the solid state
In the solid state, uranyl-salophen complex 1, decorated with bipyridyl sidearms, self-assembles from moist acetonitrile into dimeric species displaying a confined water pentamer, as observed by X-ray diffraction on single crystals. The linear water cluster is incarcerated within the dimeric cavity by coordination to the Lewis acidic uranyl centres and by a network of hydrogen bonds established with the pyridinic nitrogen atoms on the sidearms.
X-Ray crystallographic and computational study on uranyl-salophen complexes bearing nitro groups.
In the solid state, salophen–UO2 complexes bearing one, two, or three NO2 groups lack the pronounced ligand curvature that represents a structural hallmark for this class of compounds. A detailed structural study based on single-crystal X-ray crystallography and computational methods, comprising molecular dynamics, gas-phase Hartree Fock, and DFT calculations, was carried out to investigate the coordination properties of the uranyl cation.
Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state
The fluoride anion has recently gained well deserved attention among the scientific community for its importance in many fields of human activities, but also for concerns on its effect on health and the environment. Although surprisingly overlooked in systematic studies in the past, fluoride has nowadays become a topical target in the field of anion recognition. A multitude of scientific reports are published every year where the establishment of efficient and specific interaction with fluoride is sought in polar and aqueous media. Here, the emphasis is directed to a detailed description of the most interesting contemporary studies in the field, with a particular focus given to those publis…
Ti(iv)-amino triphenolate complexes as effective catalysts for sulfoxidation
C 3 -symmetric Ti (IV) amino triphenolate complexes efficiently catalyze, without previous activation and in excellent yields, the oxidation of sulfides at room temperature, using both CHP and the more environment friendly aqueous hydrogen peroxide as terminal oxidants, with catalyst loadings down to 0.01%. The Ti(IV) catalysts and the intermediate Ti(IV)-peroxo complexes have been characterized in solution by 1H NMR and ESI-MS techniques and via density functional studies.
Recognition and sensing of fluoride anion.
Fluoride anion recognition is attracting a mounting interest in the scientific community due to its duplicitous nature. It is a useful chemical for many industrial applications, and it has been used in human diet, but, recently it has been accused for several human pathologies. Here we describe the ample panorama of different approaches the chemists world-wide have employed to face the challenge of fluoride binding, and we outline some of the research which in our view can contribute to the development of this field, especially when fluoride binding has to be achieved in highly competitive protic solvents and water.
Selective guest inclusion of linear C6 hydrocarbons in a Zn(ii) 1D coordination polymer
Trapping of volatile unbranched C6 hydrocarbons (hexane, 1-hexene, and 1-hexyne) in a 1D coordination polymer is reported. The guest inclusion was studied quantitatively by 1H-NMR analysis and thermogravimetric measurements, while synchrotron single-crystal diffraction data allowed advancing the view of their confinement into linear CP channels. Adsorption experiments performed through solid/vapour processes on microcrystals of CP 1 showed a certain degree of selectivity for 1-hexyne, which could be rationalized by its larger dipole moment.
Non-Centrosymmetric Tetrameric Assemblies of Tetramethylammonium Halides with Uranyl Salophen Complexes in the Solid State
Ditopic salophen-UO(2) receptors 1-4 and 7 co-crystallize with tetramethylammonium (TMA) chloride and fluoride salts producing good quality crystals amenable for X-ray diffraction characterization. The arrangement of the receptor and salt units in the crystal lattice is such that tetrameric ball-shaped assemblies are formed, where an inner cluster of four TMA cations are surrounded by an outer shell of four UO(2)-bound anions. These elaborate architectures, which occur in all cases, regardless of a certain degree of structural modification on the receptors, lead to lattices that belong to non-centrosymmetric (NCS) space groups. Interestingly, the tetragonal symmetry of the tetrameric ball-s…
Mononuclear Ru(II) PolyPyridyl Water Oxidation Catalysts Decorated with Perfluoroalkyl C 8 H 17 ‐Tag Bearing Chains
Specific recognition of fluoride anion using a metallamacrocycle incorporating a uranyl-salen unit
The design and synthesis of a novel fluoride receptor that uses a salen-complexed Lewis acidic uranyl center as the sole binding site is reported here. This receptor binds fluoride anions in DMSO with a high affinity constant (K > 106 M-1) and exhibits a negligible affinity (K < 10 M-1) towards otherwise effective competitors, such as acetate, phosphate and cyanide anions.
Crystal structure of a CsF-uranyl-salen complex. An unusual cesium-chlorine coordination.
Complexation of CsF with the ditopic uranyl-salen receptor results in a solid-state structure, in which the coordination sphere of cesium is filled by ligation to one of the chlorine atoms of the solvent chloroform. This X-ray structure is the first example of chloroform ligation to an alkali-metal ion.
The subtle balance of weak supramolecular interactions: The hierarchy of halogen and hydrogen bonds in haloanilinium and halopyridinium salts
The series of haloanilinium and halopyridinium salts: 4-IPhNH3Cl (1), 4-IPhNH3Br (5), 4-IPhNH3H2PO4 (6), 4-ClPhNH3H2PO4 (8), 3-IPyBnCl (9), 3-IPyHCl (10) and 3-IPyH-5NIPA (3-iodopyridinium 5-nitroisophthalate, 13), where hydrogen or/and halogen bonding represents the most relevant non-covalent interactions, has been prepared and characterized by single crystal X-ray diffraction. This series was further complemented by extracting some relevant crystal structures: 4-BrPhNH3Cl (2, CCDC ref. code TAWRAL), 4-ClPhNH3Cl (3, CURGOL), 4-FPhNH3Cl (4, ANLCLA), 4-BrPhNH3H2PO4, (7, UGISEI), 3-BrPyHCl, (11, CIHBAX) and 3-ClPyHCl, (12, VOQMUJ) from Cambridge Structural Database for sake of comparison. Bas…
ChemInform Abstract: Highlights on Contemporary Recognition and Sensing of Fluoride Anion in Solution and in the Solid State
The fluoride anion has recently gained well deserved attention among the scientific community for its importance in many fields of human activities, but also for concerns on its effect on health and the environment. Although surprisingly overlooked in systematic studies in the past, fluoride has nowadays become a topical target in the field of anion recognition. A multitude of scientific reports are published every year where the establishment of efficient and specific interaction with fluoride is sought in polar and aqueous media. Here, the emphasis is directed to a detailed description of the most interesting contemporary studies in the field, with a particular focus given to those publis…
CCDC 1519434: Experimental Crystal Structure Determination
Related Article: Arto Valkonen, Giuseppe M. Lombardo, Kari Rissanen, Francesco Punzo, Massimo Cametti|2017|Dalton Trans.|46|5240|doi:10.1039/C6DT04773D
CCDC 2068700: Experimental Crystal Structure Determination
Related Article: Manfredi Caruso, Massimo Cametti, Kari Rissanen, Javier Martí-Rujas|2021|New J.Chem.|45|12448|doi:10.1039/D1NJ02175C
CCDC 782860: Experimental Crystal Structure Determination
Related Article: Kari Raatikainen, Massimo Cametti, Kari Rissanen|2010|Beilstein J.Org.Chem.|6|4|doi:10.3762/bjoc.6.4
CCDC 782859: Experimental Crystal Structure Determination
Related Article: Kari Raatikainen, Massimo Cametti, Kari Rissanen|2010|Beilstein J.Org.Chem.|6|4|doi:10.3762/bjoc.6.4
CCDC 1519435: Experimental Crystal Structure Determination
Related Article: Arto Valkonen, Giuseppe M. Lombardo, Kari Rissanen, Francesco Punzo, Massimo Cametti|2017|Dalton Trans.|46|5240|doi:10.1039/C6DT04773D
CCDC 782858: Experimental Crystal Structure Determination
Related Article: Kari Raatikainen, Massimo Cametti, Kari Rissanen|2010|Beilstein J.Org.Chem.|6|4|doi:10.3762/bjoc.6.4
CCDC 1519437: Experimental Crystal Structure Determination
Related Article: Arto Valkonen, Giuseppe M. Lombardo, Kari Rissanen, Francesco Punzo, Massimo Cametti|2017|Dalton Trans.|46|5240|doi:10.1039/C6DT04773D
CCDC 782862: Experimental Crystal Structure Determination
Related Article: Kari Raatikainen, Massimo Cametti, Kari Rissanen|2010|Beilstein J.Org.Chem.|6|4|doi:10.3762/bjoc.6.4
CCDC 782861: Experimental Crystal Structure Determination
Related Article: Kari Raatikainen, Massimo Cametti, Kari Rissanen|2010|Beilstein J.Org.Chem.|6|4|doi:10.3762/bjoc.6.4
CCDC 1477312: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Sandip Bhowmik, Kari Rissanen, Matti Haukka, Massimo Cametti|2016|Dalton Trans.|45|12756|doi:10.1039/C6DT02008A
CCDC 1477308: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Sandip Bhowmik, Kari Rissanen, Matti Haukka, Massimo Cametti|2016|Dalton Trans.|45|12756|doi:10.1039/C6DT02008A
CCDC 1907903: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Massimo Cametti, Elina Kalenius, Antonino Famulari, Kari Rissanen, Matti Haukka|2019|Eur.J.Inorg.Chem.|2019|4463|doi:10.1002/ejic.201900579
CCDC 921455: Experimental Crystal Structure Determination
Related Article: Massimo Cametti, Arto Valkonen, Kai Rissanen|2019|Supramol.Chem.|31|653|doi:10.1080/10610278.2019.1632458
CCDC 1477310: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Sandip Bhowmik, Kari Rissanen, Matti Haukka, Massimo Cametti|2016|Dalton Trans.|45|12756|doi:10.1039/C6DT02008A
CCDC 1493777: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Massimo Cametti, Elina Kalenius, Antonino Famulari, Kari Rissanen, Matti Haukka|2019|Eur.J.Inorg.Chem.|2019|4463|doi:10.1002/ejic.201900579
CCDC 1519433: Experimental Crystal Structure Determination
Related Article: Arto Valkonen, Giuseppe M. Lombardo, Kari Rissanen, Francesco Punzo, Massimo Cametti|2017|Dalton Trans.|46|5240|doi:10.1039/C6DT04773D
CCDC 1519432: Experimental Crystal Structure Determination
Related Article: Arto Valkonen, Giuseppe M. Lombardo, Kari Rissanen, Francesco Punzo, Massimo Cametti|2017|Dalton Trans.|46|5240|doi:10.1039/C6DT04773D
CCDC 1493776: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Massimo Cametti, Elina Kalenius, Antonino Famulari, Kari Rissanen, Matti Haukka|2019|Eur.J.Inorg.Chem.|2019|4463|doi:10.1002/ejic.201900579
CCDC 1054511: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Filip Topić, Massimo Cametti, Kari Rissanen|2015|Chemical Science|6|5712|doi:10.1039/C5SC01851J
CCDC 1519436: Experimental Crystal Structure Determination
Related Article: Arto Valkonen, Giuseppe M. Lombardo, Kari Rissanen, Francesco Punzo, Massimo Cametti|2017|Dalton Trans.|46|5240|doi:10.1039/C6DT04773D
CCDC 1477311: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Sandip Bhowmik, Kari Rissanen, Matti Haukka, Massimo Cametti|2016|Dalton Trans.|45|12756|doi:10.1039/C6DT02008A
CCDC 1493778: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Massimo Cametti, Elina Kalenius, Antonino Famulari, Kari Rissanen, Matti Haukka|2019|Eur.J.Inorg.Chem.|2019|4463|doi:10.1002/ejic.201900579
CCDC 782863: Experimental Crystal Structure Determination
Related Article: Kari Raatikainen, Massimo Cametti, Kari Rissanen|2010|Beilstein J.Org.Chem.|6|4|doi:10.3762/bjoc.6.4
CCDC 1477309: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Sandip Bhowmik, Kari Rissanen, Matti Haukka, Massimo Cametti|2016|Dalton Trans.|45|12756|doi:10.1039/C6DT02008A
CCDC 1054510: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Filip Topić, Massimo Cametti, Kari Rissanen|2015|Chemical Science|6|5712|doi:10.1039/C5SC01851J
CCDC 1054512: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Filip Topić, Massimo Cametti, Kari Rissanen|2015|Chemical Science|6|5712|doi:10.1039/C5SC01851J
CCDC 782856: Experimental Crystal Structure Determination
Related Article: Kari Raatikainen, Massimo Cametti, Kari Rissanen|2010|Beilstein J.Org.Chem.|6|4|doi:10.3762/bjoc.6.4
CCDC 1493774: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Massimo Cametti, Elina Kalenius, Antonino Famulari, Kari Rissanen, Matti Haukka|2019|Eur.J.Inorg.Chem.|2019|4463|doi:10.1002/ejic.201900579
CCDC 1054509: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Filip Topić, Massimo Cametti, Kari Rissanen|2015|Chemical Science|6|5712|doi:10.1039/C5SC01851J
The subtle balance of weak supramolecular interactions: The hierarchy of halogen and hydrogen bonds in haloanilinium and halopyridinium salts
The series of haloanilinium and halopyridinium salts: 4-IPhNH₃Cl (1), 4-IPhNH₃Br (5), 4-IPhNH₃H₂PO₄ (6), 4-ClPhNH₃H₂PO₄ (8), 3-IPyBnCl (9), 3-IPyHCl (10) and 3-IPyH-5NIPA (3-iodopyridinium 5-nitroisophthalate, 13), where hydrogen or/and halogen bonding represents the most relevant non-covalent interactions, has been prepared and characterized by single crystal X-ray diffraction. This series was further complemented by extracting some relevant crystal structures: 4-BrPhNH3Cl (2, CCDC ref. code TAWRAL), 4-ClPhNH3Cl (3, CURGOL), 4-FPhNH3Cl (4, ANLCLA), 4-BrPhNH3H2PO4, (7, UGISEI), 3-BrPyHCl, (11, CIHBAX) and 3-ClPyHCl, (12, VOQMUJ) from Cambridge Structural Database for sake of comparison. Bas…