0000000000080985

AUTHOR

Riccardo Bonsignore

showing 70 related works from this author

Studio dell'interazione di DNA con complessi di metalli di transizione

2014

G-quadruplextransition metal complexUv-ViDNACircular dichroismdicroismo circolareInorganic Chemistrymetal complexSchiff basechimica bioinorganicaintercalantiG4complessi metalliciChimica inorganicaSettore CHIM/03 - Chimica Generale E Inorganicametalli di transizioneBasi di SchiffG4-stabilizerBioinorganic Chemistryintercalator
researchProduct

The Interaction of Small Molecules with Biomolecules

2014

The binding of small molecules with biological targets is associated to interesting chemical and biological properties of the resulting supramolecular systems. We have recently reported on the synthesis and characterization of cationic first row transition metal complexes and the study of their DNA binding properties, in aqueous solutions at neutral pH, essentially investigated by viscosimetry and spectroscopic techniques such as circular dichroism, absorption and fluorescence in the UV-visible wavelength range. Of course, such procedure cannot furnish atomic level details of the molecule-DNA interaction. Computational Chemistry may provide support for the interpretation of experimental dat…

Settore CHIM/03 - Chimica Generale E Inorganicatransition metal complexes DNA binding properties Molecular Dynamics G-quadruplexSettore CHIM/08 - Chimica Farmaceutica
researchProduct

Cyclometalated Au(III) Complexes for Cysteine Arylation in Zinc Finger Protein Domains: Towards Controlled Reductive Elimination

2019

With the aim of exploiting the use of organometallic species for the efficient modification of proteins through C-atom transfer, the gold-mediated cysteine arylation through a reductive elimination process occurring from the reaction of cyclometalated AuIII C^N complexes with a zinc finger peptide (Cys2His2 type) is here reported. Among the four selected AuIII cyclometalated compounds, the [Au(CCON)Cl2] complex featuring the 2-benzoylpyridine (CCON) scaffold was identified as the most prone to reductive elimination and Cys arylation in buffered aqueous solution (pH 7.4) at 37 °C by high-resolution LC electrospray ionization mass spectrometry. DFT and quantum mechanics/molecular mechanics (Q…

Models Molecularzinc finger proteinProtein DomainPeptidecatalysi010402 general chemistry01 natural sciencesCatalysisReductive eliminationCatalysisThermodynamicOrganogold Compounds[CHIM]Chemical SciencesReactivity (chemistry)CysteineZinc fingerchemistry.chemical_classificationAqueous solutionCoordination Complexe010405 organic chemistryOrganic Chemistryreductive eliminationZinc FingersGeneral ChemistryCombinatorial chemistry0104 chemical sciencescysteine arylationchemistrySettore CHIM/03 - Chimica Generale E Inorganicagold complexeQuantum TheoryGoldCysteine
researchProduct

"Dynamical Docking" of Cyclic Dinuclear Au(I) Bis-N-heterocyclic Complexes Facilitates Their Binding to G-Quadruplexes.

2022

With the aim to improve the design of metal complexes as stabilizers of noncanonical DNA secondary structures, namely, G-quadruplexes (G4s), a series of cyclic dinuclear Au(I) N-heterocyclic carbene complexes based on xanthine and benzimidazole ligands has been synthesized and characterized by various methods, including X-ray diffraction. Fluorescence resonance energy transfer (FRET) and CD DNA melting assays unraveled the compounds’ stabilization properties toward G4s of different topologies of physiological relevance. Initial structure–activity relationships have been identified and recognize the family of xanthine derivatives as those more selective toward G4s versus duplex DNA. The bind…

Inorganic ChemistryG-quadruplexPhysical and Theoretical ChemistryInorganic chemistry
researchProduct

G-quadruplex vs. duplex-DNA binding of nickel(II) and zinc(II) Schiff base complexes

2016

Novel nickel(II) (1) and zinc(II) (2) complexes of a Salen-like ligand, carrying a pyrimidine ring on the N,N' bridge, were synthesized and characterized. Their interaction with duplex and G-quadruplex DNA was investigated in aqueous solution through UV-visible absorption, circular dichroism and viscometry measurements. The results obtained point out that, while the zinc(II) complex does not interact with both duplex and G-quadruplex DNA, the nickel(II) complex 1 binds preferentially to G-quadruplex respect to duplex-DNA, with values of the DNA-binding constants, Kb, 2.6×10(5)M(-1) and 3.5×10(4)M(-1), respectively. Molecular dynamics simulations provided an atomic level model of the top-sta…

Models MolecularCircular dichroismComputational chemistryInorganic chemistryBinding constantchemistry.chemical_elementZincCircular dichroism010402 general chemistryG-quadruplexDNA G-quadruplex nickel01 natural sciencesBiochemistryInorganic Chemistrychemistry.chemical_compoundNickelheterocyclic compoundsSchiff BasesSchiff base010405 organic chemistryOligonucleotidezincDNABinding constantSettore CHIM/08 - Chimica Farmaceutica0104 chemical sciencesG-QuadruplexesCrystallographyNickelchemistryDuplex (building)Settore CHIM/03 - Chimica Generale E Inorganica
researchProduct

Does Ligand Symmetry Play a Role in the Stabilization of DNA G-Quadruplex Host-Guest Complexes?

2014

In efforts to find agents with improved biological activity against cancer cells, recent years have seen an increased interest in the study of small molecules able to bind the deoxyribonucleic acid (DNA) when it assumes secondary structures known as G-quadruplexes (G4s) preferring them over the B form. Currently, several compounds reported in literature have already shown to be good candidates as G4s DNA stabilizers. Even though some specific features for the G4s affinity are known, such as a π-delocalized system able to stack at the top/end of a G-tetrad and positively charged substituents able to interact with the grooves, it is not clear yet what kind of structural features affect more t…

PharmacologyGene isoformLigandStereochemistryOrganic ChemistryAntineoplastic AgentsDNATelomereLigandsG-quadruplexSettore CHIM/08 - Chimica FarmaceuticaBiochemistrySmall moleculeG-Quadruplexeschemistry.chemical_compoundOrder (biology)chemistrySettore CHIM/03 - Chimica Generale E InorganicaAnticancer drugs DNA G-quadruplex host-guest complexes ligand symmetry point group symmetryDrug DiscoveryMolecular symmetryHumansMolecular MedicineDNAStabilizer (chemistry)Current Medicinal Chemistry
researchProduct

Exploring the Chemoselectivity towards Cysteine Arylation by Cyclometallated Au III Compounds: New Mechanistic Insights

2020

To gain more insight into the factors controlling the efficient cysteine arylation by cyclometalated Au(III) complexes, the reaction between selected gold compounds and different peptides was investigated by high‐resolution liquid chromatography electrospray ionization mass spectrometry (HR‐LC‐ESI‐MS). The deducted mechanisms of C–S cross‐coupling, also supported by density functional theory (DFT) and quantum mechanics/molecular mechanics (QM/MM) calculations, evidenced the key role of secondary peptidic gold binding sites in favouring the process of reductive elimination.

010405 organic chemistryChemistryElectrospray ionizationOrganic Chemistrycyclometallated gold complexes010402 general chemistryMass spectrometry01 natural sciencesBiochemistryCombinatorial chemistryMolecular mechanicsReductive elimination0104 chemical sciencesddc:cysteine arylationGold CompoundschemoselectivitySettore CHIM/03 - Chimica Generale E InorganicapeptidesMolecular MedicineDensity functional theoryChemoselectivityMolecular BiologyCysteinemass spectrometry
researchProduct

Drugs Polypharmacology by in Silico Methods: New Opportunities in Drug Discovery

2016

Background Polypharmacology, defined as the modulation of multiple proteins rather than a single target to achieve a desired therapeutic effect, has been gaining increasing attention since 1990s, when industries had to withdraw several drugs due to their adverse effects, leading to permanent injuries or death, with multi-billiondollar legal damages. Therefore, if up to then the "one drug one target" paradigm had seen many researchers interest focused on the identification of selective drugs, with the strong expectation to avoid adverse drug reactions (ADRs), very recently new research strategies resulted more appealing even as attempts to overcome the decline in productivity of the drug dis…

0301 basic medicineDrugPolypharmacologymedia_common.quotation_subjectIn silicoNanotechnology03 medical and health sciencesBiological and chemical databases computational methods Drugs multitarget activity polypharmacology repurposingDrug DiscoveryMedicineHumansComputer SimulationPolypharmacologyRepurposingmedia_commonPharmacologyMolecular Structurebusiness.industryDrug discoveryDrug repositioningIdentification (information)030104 developmental biologyRisk analysis (engineering)businessChemical databaseSoftware
researchProduct

Comparative biological evaluation and G-quadruplex interaction studies of two new families of organometallic gold(I) complexes featuring N-heterocycl…

2020

Experimental organometallic gold(I) compounds hold promise for anticancer therapy. This study reports the synthesis of two novel families of gold(I) complexes, including N1-substituted bis-N-heterocyclic carbene (NHC) complexes of general formula [Au(N1-TBM) 2]BF 4 (N1-TBM = N1-substituted 9-methyltheobromin-8-ylidene) and mixed gold(I) NHC-alkynyl complexes, [Au(N1-TBM)alkynyl]. The compounds were fully characterised for their structure and stability in aqueous environment and in the presence of N-acetyl cysteine by nuclear magnetic resonance (NMR) spectroscopy. The structures of bis(1-ethyl-3,7,9-trimethylxanthin-8-ylidene)gold(I), (4-ethynylpyridine)(1,9-dimethyltheobromine-8-ylidene)gol…

Circular dichroismStereochemistryAntineoplastic Agents010402 general chemistryG-quadruplexLigands01 natural sciencesBiochemistryInorganic Chemistrychemistry.chemical_compoundNeoplasmsMoietyGold(I) organometallicsHumansN-heterocyclic carbenesCancer010405 organic chemistryChemistryFluorescenceG-quadruplexes0104 chemical sciencesFörster resonance energy transferMCF-7 CellsBODIPYDrug Screening Assays AntitumorSelectivityCarbeneAlkynyl ligandsMethaneOrganogold Compounds
researchProduct

Carbon–Phosphorus Coupling from C^N Cyclometalated Au III Complexes

2020

Abstract With the aim of exploiting new organometallic species for cross‐coupling reactions, we report here on the AuIII‐mediated Caryl−P bond formation occurring upon reaction of C^N cyclometalated AuIII complexes with phosphines. The [Au(C^N)Cl2] complex 1 featuring the bidentate 2‐benzoylpyridine (CCON) scaffold was found to react with PTA (1,3,5‐triaza‐7‐phosphaadamantane) under mild conditions, including in water, to afford the corresponding phosphonium 5 through C−P reductive elimination. A mechanism is proposed for the title reaction based on in situ 31P{1H} NMR and HR‐ESI‐MS analyses combined with DFT calculations. The C−P coupling has been generalized to other C^N cyclometalated Au…

Organometallic Chemistrygold(III) cyclometalataled compoundsDenticitygold(III) cyclometalated compoundschemistry.chemical_element010402 general chemistry01 natural sciencesMedicinal chemistryDFTCatalysisReductive eliminationchemistry.chemical_compoundcross-couplingcarbon-phosphorous bond[CHIM]Chemical SciencesReactivity (chemistry)Phosphonium010405 organic chemistryPhosphorusCommunicationOrganic Chemistryreductive eliminationGeneral ChemistryBond formationcross- couplingCommunications0104 chemical sciences3. Good healthddc:gold(III) cyclometalataled compoundchemistrySettore CHIM/03 - Chimica Generale E Inorganicadensity functional calculationscarbon–phosphorous bondCarbon
researchProduct

Synthesis, characterization and DNA binding studies of potential G4 stabilizer metal complexes

2012

Settore CHIM/03 - Chimica Generale E InorganicaDNA G4 quadruplexSettore CHIM/08 - Chimica Farmaceutica
researchProduct

Heterocyclic Scaffolds for the Treatment of Alzheimer's Disease

2016

Background: The treatment and diagnosis of Alzheimer’s Disease (AD) are two of the most urgent goals for research around the world. The cognitive decline is generally associated with the elevated levels of extracellular senile plaques, intracellular neurofibril- lary tangles (NFTs), and with a progressive shutdown of the cholinergic basal forebrain neurons transmission. Even if several key targets are under fervent investigation in the cure of AD, till now, the only approved therapeutic strategy is the treatment of symptoms by using cholinesterases inhibitors. It has been demonstrated that both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes are not only responsible of…

Pathologymedicine.medical_specialtyTau proteinDisease010402 general chemistry01 natural scienceschemistry.chemical_compoundAlzheimer DiseaseHeterocyclic CompoundsDrug DiscoverymedicineAnimalsHumansSenile plaquesCognitive declineButyrylcholinesterasePharmacologybiologyMolecular Structure010405 organic chemistryChemistryAcetylcholinesterase0104 chemical sciencesbiology.proteinCholinergicNeuroscienceAmyloid precursor protein secretaseAlzheimer’s disease amyloid-peptide secretase acetylcholinesterase tau protein heterocycles
researchProduct

Highly-fluorescent BODIPY-functionalised metallacages as drug delivery systems

2022

With the aim of designing new metallosupramolecular architectures for drug delivery, research has focused on porous 3-dimensional (3D)-metallacages able to encapsulate cytotoxic agents protecting them from metabolism while targeting them to cancer sites. Here, two self-assembled [Pd2L4]4+ cages (CG1 and CG2) featuring 3,5-bis(3-ethynylpyridine)phenyl ligands (L) exo-functionalised with dipyrromethene (BODIPY) groups have been synthesised and characterised by different methods, including NMR spectroscopy and mass spectrometry. 1H NMR spectroscopy studies shows that the cages are able to encapsulate the anticancer drug cisplatin in their hydrophobic cavity, as evidenced by electrostatic poten…

Boron CompoundsInorganic ChemistryDrug Delivery SystemsCell Line TumorHumansCisplatinPalladiumDalton Transactions
researchProduct

G4-DNA vs. B-DNA binding of Schiff base transition metal complexes

2014

The competitive binding of nickel(II), copper(II) and zinc(II) complexes toward B- and G4-DNA was addressed through spectroscopic titrations and rationalized by computational investigations, consisting of molecular dynamics simulations followed by density functional theory/molecular mechanics (DFT/MM) calculations [1]. The experimental DNA binding studies clearly highlight the selectivity of the compounds, in particular the nickel(II) complex, toward G4-DNA from both h-Telo and c-myc. Moreover, the compounds show biological activity against HeLa and MCF-7 cancer cell lines. Remarkably, the experimental DNA-binding affinity trend of the three metal complexes, obtained from the DNA-binding co…

Settore CHIM/03 - Chimica Generale E InorganicaCopper Nickel Zinc Spectroscopy Computational Chemistry DNASettore CHIM/08 - Chimica Farmaceutica
researchProduct

New benzothieno[3,2-d]-1,2,3-triazines with antiproliferative activity: synthesis, spectroscopic studies, and biological activity.

2014

New benzothieno[3,2-d]-1,2,3-triazines, together with precursors triazenylbenzo[b]thiophenes, were designed, synthesized and screened as anticancer agents. The structural features of these compounds prompted us to investigate their DNA binding capability through UV–vis absorption titrations, circular dichroism, and viscometry, pointing out the occurrence of groove-binding. The derivative 3-(4-methoxy-phenyl)benzothieno[3,2-d]-1,2,3-triazin-4(3H)-one showed the highest antiproliferative effect against HeLa cells and was also tested in cell cycle perturbation experiments. The obtained results assessed for the first time the anticancer activity of benzothieno[3,2-d]-1,2,3-triazine nucleus, and…

Circular dichroismStereochemistryClinical BiochemistryPharmaceutical ScienceAntineoplastic AgentsThiophenesBiochemistryHeLachemistry.chemical_compoundStructure-Activity RelationshipSettore BIO/10 - BiochimicaDrug DiscoveryStructure–activity relationshipMoleculeHumansMolecular BiologyCell ProliferationbiologyDose-Response Relationship DrugMolecular StructureChemistryCell growthTriazinesViscosityCircular DichroismOrganic ChemistryCell CycleBiological activityCell cyclebiology.organism_classificationSettore CHIM/08 - Chimica FarmaceuticaCombinatorial chemistrySettore CHIM/03 - Chimica Generale E InorganicaMolecular MedicineBenzothienotriazines Antiproliferative activity Spectroscopic studies Cell-cycle analysis VLAKSpectrophotometry UltravioletDrug Screening Assays AntitumorDNAHeLa CellsBioorganicmedicinal chemistry letters
researchProduct

Complessi di Platinum(II): sintesi, studi di DNA-binding e loro attività antitumorale in vitro

2013

Con lo scopo di trovare nuovi analoghi del Cis-DDP (cis-diammino dicloro platino(II)) nuovi complessi del platino sono stati sintetizzati, caratterizzati e ne è stata studiata l’attività antitumorale in vitro [1]. Recentemente sono stati preparati complessi con metalli del quarto periodo di transizione con entrambi i leganti, dipirido[3,2-a:2’,3’-c]fenazina (dppz) e glicinato (gly) [2]. I composti di nuova sintesi vengono generalmente caratterizzati attraverso parecchie tecniche analitiche incluso la cristallografia a raggi-X e la loro attività antitumorale viene testata su un vasto pannello di linee cellulari umane [1,2]. Le proprietà biologiche spesso sono correlate alla loro interazione …

dipirido[32-a:2’3’-c]fenazina (dppz)Complessi di Pt(II)glicinato (gly)
researchProduct

SELECTIVE G-QUADRUPLEX STABILIZERS: SALPHEN-LIKE COMPLEXES WITH ANTIPROLIFERATIVE ACTIVITY

2013

Schiff base complexes derived from N,N!-bridged tetradentate ligands involving N2O2 donor atoms present very favourable features to act as G4 binders. Thus, a series of square-planar and square pyramidal metal complexes, ML2+ (M = Ni, Cu, and Zn), have been synthesized and characterized.

G-QUADRUPLEX STABILIZERS Schiff base complexes hTelo and c-myc G-quadruplexes DNASettore CHIM/03 - Chimica Generale E InorganicaSettore BIO/10 - BiochimicaSettore CHIM/08 - Chimica Farmaceutica
researchProduct

DNA-Binding and Anticancer Activity of Pyrene-Imidazolium Derivatives

2016

DNA-binding investigations showed that two different derivatives endowed with pyrene and imidazolium moieties, 1 and 2, strongly bind both double-stranded DNA and telomeric sequences in G-quadruplex (G4) conformation. The values of the DNA-binding constants indicate that 1 and 2 show preferential affinity for G4-DNA, of about one and two orders of magnitude, respectively. Moreover, 1 and 2 inhibit short and long-term proliferation of breast cancer cell lines in a time- and dose-dependent fashion. Remarkably, senescence assays indicate that telomeric G4-DNA is a possible biotarget for the cytotoxic activity of 2. Molecular dynamics simulations suggest that the stronger binding of 2 with G4-D…

Senescence010405 organic chemistryGeneral Chemistry010402 general chemistry01 natural sciences0104 chemical sciencesMolecular dynamicschemistry.chemical_compoundBreast cancer cell linechemistrySettore CHIM/03 - Chimica Generale E InorganicaBiophysicsPyreneCytotoxic T cellBiological activity · DNA · G-Quadruplexes · Molecular modelingDNA
researchProduct

Kinase Inhibitors in Multitargeted Cancer Therapy

2017

The old-fashioned anticancer approaches, aiming in arresting cancer cell proliferation interfering with non-specific targets (e.g. DNA), have been replaced, in the last decades, by more specific target oriented ones. Nonetheless, single-target approaches have not always led to optimal outcomes because, for its complexity, cancer needs to be tackled at various levels by modulation of several targets. Although at present, combinations of individual single-target drugs represent the most clinically practiced therapeutic approaches, the modulation of multiple proteins by a single drug, in accordance with the polypharmacological strategy, has become more and more appealing. In the perspective of…

0301 basic medicineDrugNiacinamideIndolesPyridinesmedia_common.quotation_subjectPharmacologyBioinformaticsBiochemistryReceptor tyrosine kinase03 medical and health sciencesCrizotinibPiperidinesMultitargeted drugs anticancer agents polypharmacology tyrosine kinase receptors oncogene addiction tumor microenvironment FDA-approved drugsNeoplasmsDrug DiscoverymedicineSunitinibHumansAnilidesPyrrolesProtein Kinase Inhibitorsmedia_commonPharmacologyTumor microenvironmentbiologybusiness.industryPhenylurea CompoundsOrganic ChemistryImidazolesCancerReceptor Protein-Tyrosine KinasesSorafenibmedicine.diseaseOncogene AddictionSettore CHIM/08 - Chimica FarmaceuticaClinical trialPyridazines030104 developmental biologyMechanism of actionbiology.proteinImatinib MesylateQuinazolinesMolecular MedicinePyrazolesmedicine.symptombusinessTyrosine kinase
researchProduct

On the Mechanism of Gold/NHC Compounds Binding to DNA G-Quadruplexes: Combined Metadynamics and Biophysical Methods

2018

The binding modes and free-energy landscape of two AuI /N-heterocyclic carbene complexes interacting with G-quadruplexes, namely a human telomeric (hTelo) and a promoter sequence (C-KIT1), are studied here for the first time by metadynamics. The theoretical results are validated by FRET DNA melting assays and provide an accurate estimate of the absolute gold complex/DNA binding free energy. This advanced in silico approach is valuable to achieve rational drug design of selective G4 binders.

Molecular Structure010405 organic chemistryIn silicoMetadynamicsDrug designSequence (biology)General MedicineDNAGeneral Chemistryanticancer010402 general chemistryG-quadruplex01 natural sciencesCombinatorial chemistryCatalysis0104 chemical sciencesG-Quadruplexeschemistry.chemical_compoundNucleic acid thermodynamicsFörster resonance energy transferchemistryFluorescence Resonance Energy TransferN-heterocyclic carbenesGoldDNAAngewandte Chemie International Edition
researchProduct

DNA-binding of zinc(II) and nickel(II) salphen-like complexes extrapolated at 1 M salt concentration: Removing the ionic strength bias in physiologic…

2020

Abstract The DNA-binding of two salphen-like metal complexes of nickel(II) (1) and zinc(II) (2) was investigated in different ionic strength solutions by absorption spectroscopy. The data analysis allowed us to obtain the values of their extrapolated DNA-binding constant in physiological conditions, with DNA-binding strength in the order Ni > Zn, and to give relative weight to the electrostatic and non-electrostatic contributions to their DNA-interaction.

Absorption spectroscopyInorganic chemistryStatic ElectricitySalt (chemistry)chemistry.chemical_elementRelative weightZincPhenylenediaminesSodium Chloride010402 general chemistry01 natural sciencesBiochemistryInorganic ChemistryMetalchemistry.chemical_compoundIonic strengthCoordination ComplexesNickelSalphenchemistry.chemical_classification010405 organic chemistryChemistrySpectrum AnalysisOsmolar ConcentrationDNA0104 chemical sciencesNickelZincIonic strengthSettore CHIM/03 - Chimica Generale E Inorganicavisual_artvisual_art.visual_art_mediumUV–visible absorptionDNAJournal of Inorganic Biochemistry
researchProduct

Competitive Profiling of Ligandable Cysteines in Staphylococcus aureus with an Organogold Compound

2022

With the idea of exploiting metal-templated reactions to achieve selective modification of cysteines in proteins for antibacterial applications, an organometallic cyclometalated Au(III) compound was explored in a competitive chemoproteomic approach based on the isoDTB-ABPP (isotopically labelled desthiobiotin azide-activity-based protein profiling) technology in S. aureus cell extracts. In this way, more than 100 ligandable cysteines where identified, of which 10 were close to functional sites of proteins encoded by essential genes indicating potential for antibiotic development. Interestingly, more than 50% of the identified ligandable sites were not engaged by organic α-chloroacetamides i…

Staphylococcus aureusMaterials ChemistryMetals and AlloysCeramics and CompositesCysteineGeneral ChemistryOrganogold CompoundsCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials
researchProduct

The interaction of Schiff Base complexes of nickel(II) and zinc(II) with duplex and G-quadruplex DNA

2017

The duplex and G-quadruplex DNA-binding of six nickel(II) and zinc(II) complexes of three salphen-like ligands (salphen = N,N?-bis-salicylidene-1,2-phenylenediaminato) was investigated by UV-visible absorption and circular dichroism spectroscopy. The results obtained, in particular the values of the DNA-binding constants, Kb, point out that the nickel(II) complexes show a higher affinity toward both duplex and G-quadruplex DNA, compared to the analogous zinc(II) complexes. Interestingly, the zinc(II) complexes possess high selectivity toward G-quadruplex DNA, being negligible their binding with duplex DNA. Molecular dynamics (MD) simulations provided atomistic models for the interpretation …

Circular dichroismComputational chemistryInorganic chemistryBinding constantchemistry.chemical_element-Zinc010402 general chemistryG-quadruplex01 natural sciencesBiochemistryInorganic Chemistrychemistry.chemical_compoundCoordination ComplexesNickelheterocyclic compoundsSchiff BasesSchiff baseG-quadruplex010405 organic chemistryDNABinding constant0104 chemical sciencesG-QuadruplexesNickelCrystallographyZincchemistryDuplex (building)Settore CHIM/03 - Chimica Generale E InorganicaDNA
researchProduct

Characterization of Hydrophilic Gold(I) N-Heterocyclic Carbene (NHC) Complexes as Potent TrxR Inhibitors Using Biochemical and Mass Spectrometric App…

2017

We report here on the synthesis of a series of mono-and dinuclear gold(I) complexes exhibiting sulfonated bis(NHC) ligands and novel hydroxylated mono(NHC) Au(I) compounds, which were also examined for their 'biological activities. Initial cell viability assays show strong antiproliferative activities of the hydroxylated mono(NHC) gold compounds (8 > 9 > 10) against 2008 human ovarian cancer cells even after 1 h incubation. In order to gain insight into the mechanism of biological action of the gold compounds, their effect on the pivotal cellular target seleno-enzyme thioredoxin reductase (TrxR), involved in the maintenance of intracellular redox balance, was investigated in depth. Th…

Thioredoxin Reductase 1AuranofinSilverStereochemistryThioredoxin reductaseThioredoxin Reductase 2WATER-SOLUBLE RUTHENIUM(II)Antineoplastic Agents010402 general chemistryG-quadruplexLigandsIN-VITRO CYTOTOXICITYLIGANDS SYNTHESIS01 natural sciencesInorganic Chemistrychemistry.chemical_compoundDrug StabilityThioredoxin Reductase 1Coordination ComplexesTHIOREDOXIN REDUCTASE INHIBITIONCell Line TumormedicineOrganogold CompoundsAnimalsHumansCRYSTAL-STRUCTURESPhysical and Theoretical ChemistryCANCER CELLSBIOLOGICAL-PROPERTIES010405 organic chemistryChemistryMOLECULAR-MECHANISMSDNA0104 chemical sciencesRatsG-QuadruplexesGlutathione ReductaseSolubilityBiological targetCancer cellPLATINUM ANTICANCER DRUGSMETAL-COMPLEXESGoldReactive Oxygen SpeciesCarbeneHydrophobic and Hydrophilic InteractionsOrganogold Compoundsmedicine.drugInorganic Chemistry
researchProduct

Antiproliferative properties and g-quadruplex-binding of symmetrical naphtho[1,2-b:8,7-b’]dithiophene derivatives

2021

Background: G-quadruplex (G4) forming sequences are recurrent in telomeres and promoter regions of several protooncogenes. In normal cells, the transient arrangements of DNA in G-tetrads may regulate replication, transcription, and translation processes. Tumors are characterized by uncontrolled cell growth and tissue invasiveness and some of them are possibly mediated by gene expression involving G-quadruplexes. The stabilization of G-quadruplex sequences with small molecules is considered a promising strategy in anticancer targeted therapy. Methods: Molecular virtual screening allowed us identifying novel symmetric bifunctionalized naphtho[1,2-b:8,7-b’]dithiophene ligands as interesting ca…

StereochemistryPharmaceutical ScienceAntineoplastic AgentsNaphthols010402 general chemistryG-quadruplex01 natural sciencesArticleAnalytical ChemistryHeLaProto-Oncogene Proteins c-mycchemistry.chemical_compoundSynthesisQD241-441Transcription (biology)H-TeloG-QuadruplexDrug DiscoveryC-MYCHumansheterocyclic compoundsPhysical and Theoretical ChemistryAntiproliferative effect; C-MYC; G-Quadruplex; H-Telo; Molecular docking; Planar heterocyclic scaffold; SynthesisCell ProliferationAntiproliferative effectVirtual screeningbiology010405 organic chemistryCell growthChemistryCytotoxinsOrganic Chemistrybiology.organism_classificationSmall moleculeSettore CHIM/08 - Chimica FarmaceuticaIn vitro0104 chemical sciencesG-QuadruplexesPlanar heterocyclic scaffoldChemistry (miscellaneous)Settore CHIM/03 - Chimica Generale E InorganicaMolecular dockingMolecular MedicineDNAHeLa Cells
researchProduct

Isoxazolo[3,4-d]pyridazin-7(6H)-one derivatives endowed with anti-proliferative Activity.

2016

Isoxazolo[3,4-d]pyridazin-7(6H)-one derivatives endowed with antiproliferative Activity B. Maggio1, G. Cancemi1, D. Raffa1, M. V. Raimondi1, F. Plescia1, A. D’Anneo2,M. Lauricella3, G. Barone4, R. Bonsignore4, G. Daidone1 1. Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Medicinal Chemistry and Pharmaceutical Technologies Section, University of Palermo, ViaArchirafi 32, 90123, Palermo, Italy 2. Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo. 3.Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo. 4. Department o…

anti-proliferative activity.Isoxazolo[34-d]pyridazin-7(6H)-one derivative
researchProduct

STUDIO DELL'INTERAZIONE DI DNA-NATIVO CON Zn(3-ACETIL-1-(2-NITROFENIL)PENTAN-1,4-DIONATO)2

2011

TrichetoneZincoIntercalanteSettore CHIM/03 - Chimica Generale E InorganicaDNASettore CHIM/08 - Chimica Farmaceutica
researchProduct

Selective G-quadruplex stabilizers: Schiff-base metal complexes with anticancer activity

2014

The affinity of three square-planar nickel(II) (1), copper(II) (2) and zinc(II) (3) Schiff-base complexes for wild-type human telomeric (h-Telo) and protooncogene c-myc G-quadruplex (G4) DNA was investigated by UV-visible absorption spectroscopy and circular dichroism. DNA-binding constants (Kb) were determined by spectrophotometric titrations for both G4-DNA and B-DNA. The results obtained point out that the three metal complexes selectively bind G4-DNA with higher affinity, up to two orders of magnitude, with respect to B-DNA. The nickel(II) complex 1 was found to be the most effective G4-DNA stabilizer and the Kb values decrease in the order 1 > 2 ≈ 3. Innovative computational investigat…

Schiff base metal complexes Nickel Copper Zinc Spectroscopy Computational Chemistry.Circular dichroismSchiff basebiologyChemistryStereochemistryGeneral Chemical Engineeringchemistry.chemical_elementBiological activityGeneral ChemistryZincG-quadruplexbiology.organism_classificationSettore CHIM/08 - Chimica FarmaceuticaMetalHeLachemistry.chemical_compoundCrystallographyG-quadruplex DNASettore CHIM/03 - Chimica Generale E InorganicaSettore BIO/10 - Biochimicavisual_artvisual_art.visual_art_mediumDNARSC Adv.
researchProduct

On the G‐quadruplex binding of a new class of Ni(II), Cu(II) and Zn(II) salphen‐like complexes

2021

The involvement of non-canonical DNA structures, such as Gquadruplex (G4) DNA, in cancer development and progression has set the pace towards the renaissance of DNA-binding metal complexes. In this work, we report the DNA-binding of three Ni(II), Cu(II), Zn(II) complexes of a salphen-like N4-donor ligand, bearing two imidazole groups condensed with a phenylenediamine moiety. Both duplex and G4 DNAs derived from human telomeres (hTelo), and a sequence mimicking the promoter of the oncogene myc (c-myc) were studied. UV-Vis and circular dichroism spectroscopic binding studies pointed out that, while all the three complexes bind the selected oligonucleotides, the Cu(II) derivative is the strong…

Settore CHIM/03 - Chimica Generale E InorganicaBinding constants · Copper · N ligands · Nickel · Zinc
researchProduct

Comparing the Antileishmanial Activity of Gold(I) and Gold(III) Compounds in L. amazonensis and L. braziliensis in Vitro

2020

Abstract Abstract: A series of mononuclear coordination or organometallic AuI/AuIII complexes (1–9) have been comparatively studied in vitro for their antileishmanial activity against promastigotes and amastigotes, the clinically relevant parasite form, of Leishmania amazonensis and Leishmania braziliensis. One of the cationic AuI bis‐N‐heterocyclic carbenes (3) has low EC50 values (ca. 4 μM) in promastigotes cells and no toxicity in host macrophages. Together with two other AuIII complexes (6 and 7), the compound is also extremely effective in intracellular amastigotes from L. amazonensis. Initial mechanistic studies include an evaluation of the gold complexes′ effect on L. amazonensis’ pl…

StereochemistryAntiprotozoal Agentsamastigotes01 natural sciencesBiochemistryMiceGold iiiParasitic Sensitivity TestsGold CompoundsDrug Discoverygold compoundsmedicineAnimalsGeneral Pharmacology Toxicology and PharmaceuticsAmastigoteleishmaniasisCells CulturedEC50LeishmaniaPharmacologyMice Inbred BALB CMolecular Structurebiology010405 organic chemistryChemistryCommunicationOrganic ChemistryLeishmaniasismedicine.diseasebiology.organism_classificationLeishmania braziliensisCommunicationsIn vitroddc:0104 chemical sciences010404 medicinal & biomolecular chemistryMolecular MedicinepromastigotesOrganogold CompoundsIntracellularChemMedChem
researchProduct

Elemental contamination of an open-pit mining area in the Peruvian Andes

2014

New technologies and higher prices of raw materials have promoted the expansion of mining activity throughout the world; if not properly regulated, this activity can lead to contamination of the local and regional environ- ment. The city of Cerro de Pasco is located close to a large open-pit mine and in recent years, several reports have pro- vided evidence of environmental contamination and related health problems. The aim of this paper is to evaluate the contamination in fluvial water, sediments and biological fluids from this area. The collective results show elevated metal and metalloid concentrations in rivers and sediments, especially in the areas downstream of the mine. For instance,…

education.field_of_studyEnvironmental Engineeringbusiness.industryPopulationOpen-pit miningFluvialContaminationBioaccumulation Heavy metals Open-pit mine Water contaminationSurface miningBioaccumulationEnvironmental chemistryEnvironmental ChemistryEnvironmental scienceEcotoxicologyMetalloidGeneral Agricultural and Biological Sciencesbusinesseducation
researchProduct

Fluorescent metal-based complexes as cancer probes.

2020

Abstract The ability to track drugs inside of cells and tumours has been highly valuable in cancer research and diagnosis. Metal complexes add attractive features to fluorescent drugs, such as targeting and specificity, solubility and uptake or photophysical properties. This review focuses on the latest fluorescent metal-based complexes, their cellular targets, photophysical properties and possible anticancer effects.

LightClinical BiochemistryPharmaceutical ScienceAntineoplastic Agents01 natural sciencesBiochemistryMetal-based probesMetalMetal complexesCoordination ComplexesCell Line TumorMetals HeavyNeoplasmsDrug DiscoveryAnticancer probesFluorescence microscopemedicineAnimalsHumansSolubilityMolecular BiologyFluorescent DyesFluorescence microscopyTargeting010405 organic chemistryChemistryOrganic ChemistryCancermedicine.diseaseTheranosticsCombinatorial chemistryFluorescence0104 chemical sciences010404 medicinal & biomolecular chemistryvisual_artvisual_art.visual_art_mediumFluorescent probesMolecular MedicineBioorganicmedicinal chemistry letters
researchProduct

C−C Cross-Couplings from a Cyclometalated Au(III) C∧ N Complex: Mechanistic Insights and Synthetic Developments

2021

Abstract In recent years, the reactivity of gold complexes was shown to extend well beyond π‐activation and to hold promises to achieve selective cross‐couplings in several C−C and C−E (E=heteroatom) bond forming reactions. Here, with the aim of exploiting new organometallic species for cross‐coupling reactions, we report on the Au(III)‐mediated C(sp2)−C(sp) occurring upon reaction of the cyclometalated complex [Au(CCH2N)Cl2] (1, CCH2N=2‐benzylpyridine) with AgPhCC. The reaction progress has been monitored by NMR spectroscopy, demonstrating the involvement of a number of key intermediates, whose structures have been unambiguously ascertained through 1D and 2D NMR analyses (1H, 13C, 1H‐1H CO…

Coordination sphereHeteroatom010402 general chemistry01 natural sciencesCatalysisReductive eliminationNMR spectroscopyNucleophilecross-couplingReactivity (chemistry)Full Paper010405 organic chemistryChemistry[CHIM.ORGA]Chemical Sciences/Organic chemistryOrganic Chemistryreductive eliminationGeneral ChemistryNuclear magnetic resonance spectroscopy[CHIM.CATA]Chemical Sciences/CatalysisFull PapersTransition state0104 chemical sciencesgold cyclometalated complexesCrystallographyZincSettore CHIM/03 - Chimica Generale E InorganicaGoldTwo-dimensional nuclear magnetic resonance spectroscopyorganometallics
researchProduct

Nickel(II), copper(II) and zinc(II) metallo-intercalators: structural details of the DNA-binding by a combined experimental and computational investi…

2014

We present a thorough characterization of the interaction of novel nickel(II) (1), copper(II) (2) and zinc(II) (3) Schiff base complexes with native calf thymus DNA (ct-DNA), in buffered aqueous solution at pH 7.5. UV-vis absorption, circular dichroism (CD) and viscometry titrations provided clear evidence of the intercalative mechanism of the three square-planar metal complexes, allowing us to determine the intrinsic DNA-binding constants (K(b)), equal to 1.3 × 10(7), 2.9 × 10(6), and 6.2 × 10(5) M(-1) for 1, 2 and 3, respectively. Preferential affinity, of one order of magnitude, toward AT compared to GC base pair sequences was detected by UV-vis absorption titrations of 1 with [poly(dG-d…

Circular dichroismXASIntercalation (chemistry)Inorganic chemistryMolecular Dynamics SimulationInorganic ChemistryMetalbioinorganic chemistrychemistry.chemical_compoundsymbols.namesakeCoordination ComplexesNickelSchiff BasesX-ray absorption spectroscopySchiff baseAqueous solutionExtended X-ray absorption fine structureCircular DichroismDNAcomputational chemistrySettore CHIM/08 - Chimica FarmaceuticaIntercalating AgentsGibbs free energyZincCrystallographyX-Ray Absorption SpectroscopychemistrySettore CHIM/03 - Chimica Generale E Inorganicavisual_artsymbolsvisual_art.visual_art_mediumSpectrophotometry UltravioletCopper
researchProduct

A novel compound of triphenyltin(IV) with N-tert-butoxycarbonyl-L-ornithine causes cancer cell death by inducing a p53-dependent activation of the mi…

2017

The triphenyltin(IV) compound with N-tert-butoxycarbonyl-L-ornithine (Boc-Orn-OH), [Ph3Sn(Boc-Orn-O)], was synthesized and characterized by elemental analysis, FT-IR, solution1H,13C and119Sn NMR and ESI mass spectrometry. The organotin(IV) compound inhibited at very low micromolar concentrations the growth of human tumor cell lines HepG2 (hepatocarcinoma cells), MCF-7 (mammary cancer) and HCT116 (colorectal carcinoma) while it did not affect the viability of non-malignant human-derived hepatic cells Chang. The mechanism of the antiproliferative effect of Ph3Sn(Boc-Orn-O), investigated on human hepatoma HepG2 cells, was pro-apoptotic, being associated with externalization of plasma membrane …

Apoptosis010402 general chemistry01 natural sciencesInorganic ChemistryBoc-Orn-OHTriphenyltin(IV) Boc-Orn-OH NMR Antitumor agents Apoptosischemistry.chemical_compoundProphaseSettore BIO/10 - BiochimicaMaterials ChemistrymedicinePhysical and Theoretical ChemistryFragmentation (cell biology)Antitumor agents010405 organic chemistryChemistryAntitumor agentCancerApoptosiTriphenyltin(IV)Phosphatidylserinemedicine.diseasedigestive system diseasesNMR0104 chemical sciencesBiochemistryTriphenyltin(IV) Boc-Orn-OH NMR Antitumor agents ApoptosisCell cultureApoptosisSettore CHIM/03 - Chimica Generale E InorganicaCancer cellHepatic stellate cell
researchProduct

NiII, and ZnII Schiff Base Complexes: Telomeric G-quadruplex Stabilizers

2014

Recently, NiII and ZnII metal complexes of the ligand Salpyrim have been synthesized and characterized. Their affinity for wild-type h-Telo G-quadruplex DNA and for calf thymus DNA was investigated by UV absorption spectroscopy, circular dichroism and viscometry. The data collectively suggest that both complexes bind effectively to G-quadruplexes by direct end-stacking, stabilizing the oligonucleotide secondary structure. The two complexes are also typical B-DNA intercalators. Remarkably, their binding constants, Kb, with the G4s structures are about 10 fold higher than those with B-DNA, highlighting the selectivity. Experiments to evaluate the biological activity of the two complexes again…

Telomeric G-quadruplex Stabilizers c-Myc c-Kit Schiff base complexes Salphen-like metal complexesSettore CHIM/03 - Chimica Generale E InorganicaSettore BIO/10 - BiochimicaSettore CHIM/08 - Chimica Farmaceutica
researchProduct

Attività anti-proliferativa di derivati di organostagno(IV) con Na-Boc-Ornitina e studio dell’azione pro-apoptotica del derivato Ph3Sn(Boc- Orn)

2013

Nuovi composti di organostagno(IV) [R3SnL e R¢2SnL2 (R = Me, Ph e R¢= Me, nBu, HL= Na-Boc-Ornitina)] sono stati sintetizzati e caratterizzati sia allo stato solido (FT-IR) che in soluzione (1H e 13C NMR) per poterne valutare la citotossicità in linee cellulari tumorali [1]. Na-Boc-Ornitina si comporta come un legante chelante dello stagno con il gruppo carbossilato, mentre il gruppo amminico Na-protetto è esente dalla coordinazione. I composti sono stati testati per l’attività citotossica in vitro su cellule neoplastiche umane HepG2 di epatocarcinoma ed MCF7 di cancro al seno. L’effetto dei composti, nel range da 0.5 a 25 μM, dopo 24 h di incubazione è stato valutato mediante saggio MTT. Il…

triorganoSn(IV)attività antitumorale organostagno(IV)
researchProduct

Metal Ions and Metal Complexes in Alzheimer's Disease.

2015

Background: Alzheimer’s disease (AD) is the most common form of dementia that seriously affects daily life. Even if AD pathogenesis is still subject of debate, it is generally accepted that cerebral cortex plaques formed by aggregated amyloid-β (Aβ) peptides can be considered a characteristic pathological hallmark. It is well known that metal ions play an important role in the aggregation process of Aβ. Methods: This review focuses on the anti-Aβ aggregation activity of chelating ligands as well as on the use of metal complexes as diagnostic probes and as potential drugs. Conclusion: While chelating agents, such as curcumin or flavonoid derivatives, are currently used to capture metal ions …

0301 basic medicineStereochemistryMetal ions in aqueous solutionchemistry.chemical_elementProtein aggregationImagingPathogenesis03 medical and health scienceschemistry.chemical_compoundProtein AggregatesAlzheimer DiseaseCoordination ComplexesMetals HeavyDrug DiscoveryAD drugmedicineDementiaAnimalsHumansChelationMetal ionPharmacologyAmyloid beta-PeptidesDrug Discovery3003 Pharmaceutical ScienceAnti-aβ aggregating agentmedicine.diseaseCombinatorial chemistryRuthenium030104 developmental biologychemistrySettore CHIM/03 - Chimica Generale E InorganicaCurcuminMetal complexeAlzheimer's diseaseAlzheimer’s diseaseCurrent pharmaceutical design
researchProduct

On the G‐Quadruplex Binding of a New Class of Nickel(II), Copper(II), and Zinc(II) Salphen‐Like Complexes

2021

Inorganic ChemistryNickelchemistryPolymer chemistrychemistry.chemical_elementZincCopperG quadruplex bindingddc:
researchProduct

Identifying and validating the presence of guanine-quadruplexes (G4) within the blood fluke parasite schistosoma mansoni

2021

Schistosomiasis is a neglected tropical disease that currently affects over 250 million individuals worldwide. In the absence of an immunoprophylactic vaccine and the recognition that mono-chemotherapeutic control of schistosomiasis by praziquantel has limitations, new strategies for managing disease burden are urgently needed. A better understanding of schistosome biology could identify previously undocumented areas suitable for the development of novel interventions. Here, for the first time, we detail the presence of G-quadruplexes (G4) and putative quadruplex forming sequences (PQS) within the Schistosoma mansoni genome. We find that G4 are present in both intragenic and intergenic regi…

Untranslated regionMaleSchistosoma MansoniMolecular biologyRC955-962Oligonucleotides01 natural sciencesGenomeBiochemistryMiceIntergenic regionMedical ConditionsUntranslated RegionsArctic medicine. Tropical medicineInvertebrate GenomicsMedicine and Health SciencesRNA structureGenetics0303 health sciencesMammalian GenomicsbiologyNucleotidesCircular DichroismMessenger RNAEukaryotaGenomicsG4 Schistosoma mansoni schistosomiasis3. Good healthPraziquantelNucleic acidsInfectious DiseasesSchistosomaFemaleSchistosoma mansoniPublic aspects of medicineRA1-1270medicine.drugSignal TransductionResearch Article3' UtrSchistosomiasis010402 general chemistry03 medical and health sciencesHelminthsmedicineGeneticsParasitic DiseasesAnimalsGene030304 developmental biologySchistosomaGenome HelminthPublic Health Environmental and Occupational HealthOrganismsBiology and Life Sciencesbiology.organism_classificationmedicine.diseaseInvertebrates0104 chemical sciencesG-QuadruplexesMacromolecular structure analysisAnimal GenomicsRNAZoology
researchProduct

An Organometallic Gold(I) Bis‐N‐Heterocyclic Carbene Complex with Multimodal Activity in Ovarian Cancer Cells

2020

Abstract The organometallic AuI bis‐N‐heterocyclic carbene complex [Au(9‐methylcaffeine‐8‐ylidene)2]+ (AuTMX2) was previously shown to selectively and potently stabilise telomeric DNA G‐quadruplex (G4) structures. This study sheds light on the molecular reactivity and mode of action of AuTMX2 in the cellular context using mass spectrometry‐based methods, including shotgun proteomics in A2780 ovarian cancer cells. In contrast to other metal‐based anticancer agents, this organogold compound is less prone to form coordinative bonds with biological nucleophiles and is expected to exert its drug effects mainly by non‐covalent interactions. Global protein expression changes of treated cancer cell…

ProteomicsNucleolusCancer | Very Important PaperContext (language use)Antineoplastic Agents010402 general chemistryProteomicsG-quadruplex01 natural sciencesCatalysischemistry.chemical_compoundgold complexesCaffeineCell Line TumorOrganometallic CompoundscancerHumansN-heterocyclic carbenesShotgun proteomicsMode of actionOvarian NeoplasmsFull Paper010405 organic chemistryChemistryOrganic ChemistryGeneral ChemistryFull PaperstelomeresG-quadruplexes0104 chemical sciencesddc:BiochemistryCancer cellFemaleGoldCarbeneMethane
researchProduct

An organogold compound as potential antimicrobial agent against drug resistant bacteria: Initial mechanistic insights

2021

Abstract The rise of antimicrobial resistance has necessitated novel strategies to efficiently combat pathogenic bacteria. Metal‐based compounds have been proven as a possible alternative to classical organic drugs. Here, we have assessed the antibacterial activity of seven gold complexes of different families. One compound, a cyclometalated Au(III) C^N complex, showed activity against Gram‐positive bacteria, including multi‐drug resistant clinical strains. The mechanism of action of this compound was studied in Bacillus subtilis. Overall, the studies point towards a complex mode of antibacterial action, which does not include induction of oxidative stress or cell membrane damage. A number …

Cell Survivalmedicine.drug_classAntibioticsorganometallic drugsmode of action.Microbial Sensitivity TestsGram-Positive Bacteriamedicine.disease_causeBiochemistrydrug resistant bacteriaMiceStructure-Activity RelationshipAntibioticsDrug Discoverygold compoundsmedicineAnimalsGeneral Pharmacology Toxicology and PharmaceuticsMode of actionPharmacologyFull PaperDose-Response Relationship DrugMolecular StructurebiologyChemistryOrganic ChemistryPathogenic bacteriaFull Papersbiology.organism_classificationAntimicrobialAnti-Bacterial AgentsMechanism of actionBiochemistryMolecular Medicinemedicine.symptomAntibacterial activityOrganogold CompoundsBacteriaEx vivo
researchProduct

DNA-Binding of NiII, CuII and ZnII Complexes of Salen Derivatives

2014

Nickel(II), copper(II) and zinc(II) complexes of N2O2 tetradentate Schiff base ligands strongly interact with B-DNA, usually by groove-binding and/or by intercalation [1]. It has been also shown that the presence of aromatic substituents on the N,N’ bridge make them suitable G-quadruplex binders [2]. In this context, we have recently investigated the binding toward duplex and G-quadruplex DNA of nickel(II), copper(II) and zinc(II) complexes of N,N’-bis-5-(triethyl ammonium methyl)-salicylidene-2,3-naphthalendiiminato) (see Figure), by spectroscopic and computational methods [3,4]. The compounds show also biological activity against human cancer cell lines. Different substituents are present…

Settore CHIM/03 - Chimica Generale E InorganicaCopper Nickel Zinc Spectroscopy Computational Chemistry DNASettore CHIM/08 - Chimica Farmaceutica
researchProduct

Profiles and Sources of PAHs in Sediments from an Open-Pit Mining Area in the Peruvian Andes

2015

The Peruvian Andes are one of the most productive areas for mining and therefore also one of the most exposed to these sources of pollution. This article reports the characterization of Polycyclic Aromatic Hydrocarbons (PAHs) in sediments of Cerro de Pasco area (Peru) located close to a large open-pit mine and, in recent years, several reports have provided evidence of environmental contamination and related health problems. Investigations were carried out into the fifteen PAHs identified by the US-Environment Protection Agency (US-EPA) as requiring priority monitoring, other non US-EPA listed PAHs and perylene were also investigated in order to obtain further information on their origins. …

PollutionMaterials Chemistry2506 Metals and AlloysPolymers and PlasticsRange (biology)media_common.quotation_subjectWater contamination0211 other engineering and technologiesOpen-pit mining02 engineering and technology010501 environmental sciences01 natural sciencesHealth problemsMaterials Chemistry0105 earth and related environmental sciencesmedia_commonMaterials Chemistry2506 Metals and Alloy021110 strategic defence & security studiesPolymers and Plasticbusiness.industryChemistryMean valueOrganic ChemistryContaminationBioaccumulationEnvironmental chemistrybusiness
researchProduct

Mechanisms of irreversible aquaporin-10 inhibition by organogold compounds studied by combined biophysical methods and atomistic simulations

2021

Abstract The inhibition of glycerol permeation via human aquaporin-10 (hAQP10) by organometallic gold complexes has been studied by stopped-flow fluorescence spectroscopy, and its mechanism has been described using molecular modelling and atomistic simulations. The most effective hAQP10 inhibitors are cyclometalated Au(III) C^N compounds known to efficiently react with cysteine residues leading to the formation of irreversible C–S bonds. Functional assays also demonstrate the irreversibility of the binding to hAQP10 by the organometallic complexes. The obtained computational results by metadynamics show that the local arylation of Cys209 in hAQP10 by one of the gold inhibitors is mapped int…

waterBiophysicsGlycerol transportirreversible inhibitorsMolecular Dynamics SimulationAquaporinsBiochemistryBiophysical PhenomenaFluorescence spectroscopymetadynamicsBiomaterialsMolecular dynamicsGold CompoundsComputational chemistrygold compoundsHumansOrganogold CompoundsChemistryglycerol transportMetals and AlloysMetadynamicsPermeationSmall moleculeSpectrometry FluorescenceChemistry (miscellaneous)aquaglyceroporinOrganogold Compounds
researchProduct

The interaction of DNA with metal complexes: computational investigations

2012

Settore CHIM/03 - Chimica Generale E InorganicaDNA Computational Metal complexesSettore CHIM/08 - Chimica Farmaceutica
researchProduct

Exploring the Reactivity and Biological Effects of Heteroleptic N-Heterocyclic Carbene Gold(I)- Alkynyl Complexes

2020

With the aim to explore the effects of different organometallic ligands on the reactivity and biological properties of a series of twelve heteroleptic AuI complexes, of general formula [Au(NHC)(alkynyl)] (NHC = benzimidazolylidene or 1,3-dihydroimidazolylidene) were synthesized and characterized by 1H and 13C NMR and elemental analysis, and in some cases also by X-ray diffraction. The compounds were all stable in H2O/DMSO as established by NMR spectroscopy, while they could react with model thiols (EtSH) in the presence of water to undergo ligand-substitution reactions. 1H NMR experiments showed that dissociation of the more labile alkynyl ligand was possible for all compounds, while in the…

Antitumor agentsAlkyne ligands010405 organic chemistryNuclear magnetic resonance spectroscopy010402 general chemistryG-quadruplexG-quadruplexes01 natural sciencesMedicinal chemistryddc:0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundThiolschemistryReactivity (chemistry)GoldN-heterocyclic carbenesCarbeneDNAEuropean Journal of Inorganic Chemistry
researchProduct

CCDC 1955879: Experimental Crystal Structure Determination

2020

Related Article: Jens Oberkofler, Brech Aikman, Riccardo Bonsignore, Alexander Pöthig, James Platts, Angela Casini, Fritz E. Kühn|2020|Eur.J.Inorg.Chem.|2020|1040|doi:10.1002/ejic.201901043

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(33-dimethylbut-1-yn-1-yl)-[13-di-isopropylbenzimidazol-2-ylidene]-gold(i)Experimental 3D Coordinates
researchProduct

CCDC 1913564: Experimental Crystal Structure Determination

2019

Related Article: Samuel M. Meier-Menches, Brech Aikman, Daniel Döllerer, Wim T. Klooster, Simon J. Coles, Nicolò Santi, Louis Luk, Angela Casini, Riccardo Bonsignore|2020|J.Inorg.Biochem.|202|110844|doi:10.1016/j.jinorgbio.2019.110844

Space GroupCrystallographyCrystal System[(pyridin-4-yl)ethynyl]-(1379-tetramethyl-26-dioxo-123679-hexahydro-8H-purin-8-ylidene)-gold(i) unknown solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1941496: Experimental Crystal Structure Determination

2020

Related Article: Riccardo Bonsignore, Sophie R. Thomas, Wim T. Klooster, Simon J. Coles, Robert L. Jenkins, Didier Bourissou, Giampaolo Barone, Angela Casini|2020|Chem.-Eur.J.|26|4226|doi:10.1002/chem.201905392

Space GroupCrystallographyCrystal SystemCrystal Structure7-{2-[(pyridin-2-yl)amino]phenyl}-135-triaza-7-phosphatricyclo[3.3.1.137]decan-7-ium hexafluorophosphateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1916760: Experimental Crystal Structure Determination

2019

Related Article: Samuel M. Meier-Menches, Brech Aikman, Daniel Döllerer, Wim T. Klooster, Simon J. Coles, Nicolò Santi, Louis Luk, Angela Casini, Riccardo Bonsignore|2020|J.Inorg.Biochem.|202|110844|doi:10.1016/j.jinorgbio.2019.110844

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(1-ethyl-379-trimethyl-26-dioxo-236789-hexahydro-1H-purin-8-ylidene)-gold(i) tetrafluoroborate hydrateExperimental 3D Coordinates
researchProduct

CCDC 1941494: Experimental Crystal Structure Determination

2020

Related Article: Riccardo Bonsignore, Sophie R. Thomas, Wim T. Klooster, Simon J. Coles, Robert L. Jenkins, Didier Bourissou, Giampaolo Barone, Angela Casini|2020|Chem.-Eur.J.|26|4226|doi:10.1002/chem.201905392

Space GroupCrystallography7-{2-[(pyridin-2-yl)methyl]phenyl}-135-triaza-7-phosphatricyclo[3.3.1.137]decan-7-ium hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2202919: Experimental Crystal Structure Determination

2022

Related Article: Clemens Kaußler, Darren Wragg, Claudia Schmidt, Guillermo Moreno-Alcántar, Christian Jandl, Johannes Stephan, Roland A. Fischer, Stefano Leoni, Angela Casini, Riccardo Bonsignore|2022|Inorg.Chem.|61|20405|doi:10.1021/acs.inorgchem.2c03041

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-11'-methylenebis(3-methyl-23-dihydro-1H-benzimidazol-2-ylidene))-di-gold(i) bis(hexafluorophosphate) acetonitrile diethyl ether solvateExperimental 3D Coordinates
researchProduct

CCDC 2082255: Experimental Crystal Structure Determination

2021

Related Article: Riccardo Bonsignore, Sophie R. Thomas, Mathilde Rigoulet, Christian Jandl, Alexander P��thig, Didier Bourissou, Giampaolo Barone, Angela Casini|2021|Chem.-Eur.J.|27|14322|doi:10.1002/chem.202102668

Space GroupCrystallographychloro-(2-(2-pyridylmethyl)phenyl)-(2-phenylethynyl)-goldCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2143205: Experimental Crystal Structure Determination

2022

Related Article: Brech Aikman, Riccardo Bonsignore, Ben Woods, Daniel Doellerer, Riccardo Scotti, Claudia Schmidt, Alexandra A. Heidecker, Alexander Pöthig, Edward J. Sayers, Arwyn T. Jones, Angela Casini|2022|Dalton Trans.|51|7476|doi:10.1039/D2DT00337F

Space GroupCrystallographyCrystal SystemCrystal Structuretris(mu-35-bis((pyridin-3-yl)ethynyl)benzoic acid)-(mu-(35-bis((pyridin-3-yl)ethynyl)phenyl)acetate)-di-palladium(ii) tris(tetrafluoroborate) diethyl ether solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1947336: Experimental Crystal Structure Determination

2020

Related Article: Riccardo Bonsignore, Sophie R. Thomas, Wim T. Klooster, Simon J. Coles, Robert L. Jenkins, Didier Bourissou, Giampaolo Barone, Angela Casini|2020|Chem.-Eur.J.|26|4226|doi:10.1002/chem.201905392

Space GroupCrystallographyCrystal System7-[2-(pyridine-2-carbonyl)phenyl]-135-triaza-7-phosphatricyclo[3.3.1.137]decan-7-ium hexafluorophosphateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1955877: Experimental Crystal Structure Determination

2020

Related Article: Jens Oberkofler, Brech Aikman, Riccardo Bonsignore, Alexander Pöthig, James Platts, Angela Casini, Fritz E. Kühn|2020|Eur.J.Inorg.Chem.|2020|1040|doi:10.1002/ejic.201901043

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[13-di-isopropylbenzimidazol-2-ylidene]-[naphthalen-1-ylethynyl]-gold(i)Experimental 3D Coordinates
researchProduct

CCDC 2082254: Experimental Crystal Structure Determination

2021

Related Article: Riccardo Bonsignore, Sophie R. Thomas, Mathilde Rigoulet, Christian Jandl, Alexander Pöthig, Didier Bourissou, Giampaolo Barone, Angela Casini|2021|Chem.-Eur.J.|27|14322|doi:10.1002/chem.202102668

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(6-benzylidene-611-dihydropyrido[12-b]isoquinolin-5-ium)-chloro-gold chloro-(6-phenyl-12H-pyrido[21-b][3]benzazepin-5-ium)-gold(i) chloroform solvateExperimental 3D Coordinates
researchProduct

CCDC 2058320: Experimental Crystal Structure Determination

2021

Related Article: Gianluca Farine, Claudio Migliore, Alessio Terenzi, Fabrizio Lo Celso, Antonio Santoro, Giuseppe Bruno, Riccardo Bonsignore, Giampaolo Barone|2021|Eur.J.Inorg.Chem.|2021|1332|doi:10.1002/ejic.202100067

Space GroupCrystallographydiaqua-{NN'-(12-phenylene)bis[1-(1H-imidazol-4-yl)methanimine]}-nickel(ii) diperchlorateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1955875: Experimental Crystal Structure Determination

2020

Related Article: Jens Oberkofler, Brech Aikman, Riccardo Bonsignore, Alexander Pöthig, James Platts, Angela Casini, Fritz E. Kühn|2020|Eur.J.Inorg.Chem.|2020|1040|doi:10.1002/ejic.201901043

Space GroupCrystallographyCrystal System(13-dimethylbenzimidazol-2-ylidene)-[(naphthalen-1-yl)ethynyl]-gold(i)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2202918: Experimental Crystal Structure Determination

2022

Related Article: Clemens Kaußler, Darren Wragg, Claudia Schmidt, Guillermo Moreno-Alcántar, Christian Jandl, Johannes Stephan, Roland A. Fischer, Stefano Leoni, Angela Casini, Riccardo Bonsignore|2022|Inorg.Chem.|61|20405|doi:10.1021/acs.inorgchem.2c03041

Space GroupCrystallographyCrystal Systembis(mu-11'-(ethane-12-diyl)bis(3-methyl-23-dihydro-1H-benzimidazol-2-ylidene))-di-gold(i) bis(hexafluorophosphate) acetonitrile solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1955876: Experimental Crystal Structure Determination

2020

Related Article: Jens Oberkofler, Brech Aikman, Riccardo Bonsignore, Alexander Pöthig, James Platts, Angela Casini, Fritz E. Kühn|2020|Eur.J.Inorg.Chem.|2020|1040|doi:10.1002/ejic.201901043

Space GroupCrystallography[13-dimesitylimidazol-2-ylidene]-[(naphthalen-1-yl)ethynyl]-gold(i)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2202916: Experimental Crystal Structure Determination

2022

Related Article: Clemens Kaußler, Darren Wragg, Claudia Schmidt, Guillermo Moreno-Alcántar, Christian Jandl, Johannes Stephan, Roland A. Fischer, Stefano Leoni, Angela Casini, Riccardo Bonsignore|2022|Inorg.Chem.|61|20405|doi:10.1021/acs.inorgchem.2c03041

Space GroupCrystallographyCrystal System11'-(propane-13-diyl)bis(3-methyl-1H-benzimidazol-3-ium) bis[tetrafluoroborate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2082253: Experimental Crystal Structure Determination

2021

Related Article: Riccardo Bonsignore, Sophie R. Thomas, Mathilde Rigoulet, Christian Jandl, Alexander Pöthig, Didier Bourissou, Giampaolo Barone, Angela Casini|2021|Chem.-Eur.J.|27|14322|doi:10.1002/chem.202102668

Space GroupCrystallographyCrystal Systemchloro-(2-(2-pyridylmethyl)phenyl)-(2-phenylethynyl)-gold(iii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2202920: Experimental Crystal Structure Determination

2022

Related Article: Clemens Kaußler, Darren Wragg, Claudia Schmidt, Guillermo Moreno-Alcántar, Christian Jandl, Johannes Stephan, Roland A. Fischer, Stefano Leoni, Angela Casini, Riccardo Bonsignore|2022|Inorg.Chem.|61|20405|doi:10.1021/acs.inorgchem.2c03041

Space GroupCrystallographyCrystal SystemCrystal Structurebis(bis(mu-77'-(propane-13-diyl)bis(139-trimethyl-26-dioxo-236789-hexahydro-1H-purin-8-ylidene))-di-gold(i)) tetrakis(hexafluorophosphate) NN-dimethylformamide diethyl ether solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1968702: Experimental Crystal Structure Determination

2020

Related Article: Riccardo Bonsignore, Sophie R. Thomas, Wim T. Klooster, Simon J. Coles, Robert L. Jenkins, Didier Bourissou, Giampaolo Barone, Angela Casini|2020|Chem.-Eur.J.|26|4226|doi:10.1002/chem.201905392

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterschloro-[2-(pyridine-2-carbonyl)phenyl]-bis(triphenylphosphine)-gold(iii) hexafluorophosphate ethyl acetate solvateExperimental 3D Coordinates
researchProduct

CCDC 1940532: Experimental Crystal Structure Determination

2019

Related Article: Samuel M. Meier-Menches, Brech Aikman, Daniel Döllerer, Wim T. Klooster, Simon J. Coles, Nicolò Santi, Louis Luk, Angela Casini, Riccardo Bonsignore|2020|J.Inorg.Biochem.|202|110844|doi:10.1016/j.jinorgbio.2019.110844

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters([4-(28-diethyl-55-difluoro-1379-tetramethyl-5H-45-dipyrrolo[12-c:2'1'-f][132]diazaborinin-10-yl)phenyl]ethynyl)-(1379-tetramethyl-26-dioxo-236789-hexahydro-1H-purin-8-yl)-gold unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 2096758: Experimental Crystal Structure Determination

2021

Related Article: Riccardo Bonsignore, Sophie R. Thomas, Mathilde Rigoulet, Christian Jandl, Alexander Pöthig, Didier Bourissou, Giampaolo Barone, Angela Casini|2021|Chem.-Eur.J.|27|14322|doi:10.1002/chem.202102668

Space GroupCrystallographyCrystal System{2-[(pyridin-2-yl)methyl]phenyl}-bis(thiophen-2-yl)-gold(iii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2202917: Experimental Crystal Structure Determination

2022

Related Article: Clemens Kaußler, Darren Wragg, Claudia Schmidt, Guillermo Moreno-Alcántar, Christian Jandl, Johannes Stephan, Roland A. Fischer, Stefano Leoni, Angela Casini, Riccardo Bonsignore|2022|Inorg.Chem.|61|20405|doi:10.1021/acs.inorgchem.2c03041

bis(mu-77'-(ethane-12-diyl)bis(139-trimethyl-26-dioxo-236789-hexahydro-1H-purin-8-ylidene))-di-gold(i) bis(hexafluorophosphate) NN-dimethylformamide solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1955878: Experimental Crystal Structure Determination

2020

Related Article: Jens Oberkofler, Brech Aikman, Riccardo Bonsignore, Alexander Pöthig, James Platts, Angela Casini, Fritz E. Kühn|2020|Eur.J.Inorg.Chem.|2020|1040|doi:10.1002/ejic.201901043

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[13-dimesitylimidazol-2-ylidene]-(33-dimethylbut-1-yn-1-yl)-gold benzene solvateExperimental 3D Coordinates
researchProduct