A spin-crossover complex based on a 2,6-bis(pyrazol-1-yl)pyridine (1-bpp) ligand functionalized with a carboxylate group
Combining Fe(ii) with the carboxylate-functionalized 2,6-bis(pyrazol-1-yl)pyridine (bppCOOH) ligand results in the spin-crossover compound [Fe(bppCOOH)2](ClO4)2 which shows an abrupt spin transition with a T1/2 of ca. 380 K and a TLIESST of 60 K due to the presence of a hydrogen-bonded linear network of complexes.
Tuning the nuclearity of iron(iii) polynuclear clusters by using tetradentate Schiff-base ligands
Three novel octanuclear, hexanuclear and tetranuclear complexes of high-spin Fe(III) ions were obtained by the reaction of the N,N′-bis-(1R-imidazol-4-ylmethylene)-ethane-1,2-diamine ligand (R = H, CH3) and its derivatives with Fe(ClO4)3·6H2O and KSCN. The tetradentate Schiff-base ligand acts as a bis(bidentate) chelating bridge between two adjacent high-spin Fe(III) centers. The presence of a methyl group in the imidazolyl substituent, the change of counterions or the replacement of imidazole by pyridine has a drastic effect on the nuclearity of the cluster. The magnetic properties of all compounds exhibit antiferromagnetic interactions via μ-oxo or μ-hydroxo pathways in Fe(III) dimers.
Nonanuclear Spin-Crossover Complex Containing Iron(II) and Iron(III) Based on a 2,6-Bis(pyrazol-1-yl)pyridine Ligand Functionalized with a Carboxylate Group.
The synthesis and magnetostructural characterization of [Fe(III)3(μ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](ClO4)13·(CH3)2CO)6·(solvate) (2) are reported. This compound is obtained as a secondary product during synthesis of the mononuclear complex [Fe(II)(bppCOOH)2](ClO4)2 (1). The single-crystal X-ray diffraction structure of 2 shows that it contains the nonanuclear cluster of the formula [Fe(III)3(μ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](13+), which is formed by a central Fe(III)3O core coordinated to six partially deprotonated [Fe(II)(bppCOOH)(bppCOO)](+) complexes. Raman spectroscopy studies on single crystals of 1 and 2 have been performed to elucidate the spin and oxidation states of iron …
Magnetic Molecular Conductors Based on Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and the Tris(chlorocyananilato)ferrate(III) Complex
Electrocrystallization of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) organic donor in the presence of the [Fe(ClCNAn)3]3– tris(chlorocyananilato)ferrate(III) paramagnetic anion in different stoichiometric ratios and solvent mixtures afforded two different hybrid systems formulated as [BEDT-TTF]4[Fe(ClCNAn)3]·3H2O (1) and [BEDT-TTF]5[Fe(ClCNAn)3]2·2CH3CN (2) (An = anilato). Compounds 1 and 2 present unusual structures without the typical segregated organic and inorganic layers, where layers of 1 are formed by Λ and Δ enantiomers of the anionic paramagnetic complex together with mixed-valence BEDT-TTF tetramers, while layers of 2 are formed by Λ and Δ enantiomers of the paramagnetic…
Iron( ii ) and cobalt( ii ) complexes based on anionic phenanthroline-imidazolate ligands: reversible single-crystal-to-single-crystal transformations
A series of low-spin FeII and CoII complexes based on phenanthroline-imidazolate (PIMP) ligands are reported. The FeII complex (H9O4)[Fe(PIMP)3]·(C4H10O)2(H2O) (1a) shows reversible crystalline phase transformations to afford two new phases (H9O4)[Fe(PIMP)3]·(H2O) (1b) and (H9O4)[Fe(PIMP)3]·(C8H18O)(C4H10O)(H2O) (1c) by release of diethyl ether and absorption of diethyl/dibutyl ether, respectively. This reversible uptake/release of solvent molecules is a clear example of single-crystal-to-single-crystal transformation involving a discrete metal complex. On the other hand, the corresponding CoII complex (H9O4)[Co(PIMP)3]·(C4H10O)2(H2O)2 (2) does not exhibit similar phase transformations. In …
Hybrid magnetic materials based on coordination chemistry: from switching magnetic molecules to 2D coordination polymers
El trabajo descrito en esta tesis se encuadra en el ámbito de los materiales moleculares. Presenta varias estrategias para preparar nuevos materiales híbridos multifuncionales. Los complejos de transición de espín (SCO) constituyen uno de los ejemplos más espectaculares de biestabilidad molecular. En estos sistemas, las transiciones entre los estados de bajo espín (LS) y alto espín (HS) pueden estar inducidos por una variedad de estímulos externos (temperatura, presión o radiación electromagnética). Además de los interesantes aspectos fundamentales, este fenómeno es de interés creciente en el área de los materiales funcionales debido a las posibles aplicaciones en sensores, memorias o dispo…
Nanosheets of Two-Dimensional Magnetic and Conducting Fe(II)/Fe(III) Mixed-Valence Metal-Organic Frameworks.
We report the synthesis, magnetic properties, electrical conductivity, and delamination into thin nanosheets of two anilato-based Fe(II)/Fe(III) mixed-valence two-dimensional metal–organic frameworks (MOFs). Compounds [(H3O)(H2O)(phenazine)3][FeIIFeIII(C6O4X2)3]·12H2O [X = Cl (1) and Br (2)] present a honeycomb layered structure with an eclipsed packing that generates hexagonal channels containing the water molecules. Both compounds show ferrimagnetic ordering at ca. 2 K coexisting with electrical conductivity (with room temperature conductivities of 0.03 and 0.003 S/cm). Changing the X group from Cl to Br leads to a decrease in the ordering temperature and room temperature conductivity tha…
Bimetallic MnIII–FeII hybrid complexes formed by a functionalized MnIII Anderson polyoxometalate coordinated to FeII: observation of a field-induced slow relaxation of magnetization in the MnIII centres and a photoinduced spin-crossover in the FeII centres
The synthesis and crystal structure of an Anderson POM functionalized with two 2,6-di(pyrazol-1-yl)-pyridine (1-bpp) ligands are reported (compound 1). High-frequency electron paramagnetic resonance (HF-EPR) and magnetic measurements show that it presents a significant negative axial zero-field splitting and field-induced slow relaxation of magnetization due to the presence of isolated MnIII anisotropic magnetic ions. Complexation of 1 with FeII gives rise to a 2D cationic network formed by Anderson POMs coordinated to two FeII ions through the two tridentate 1-bpp ligands and to other two FeII ions through two oxo ligands in compound 2, and to an anionic polymeric network formed by Anderso…
Spin-crossover compounds based on iron(II) complexes of 2,6-bis(pyrazol-1-yl)pyridine (bpp) functionalized with carboxylic acid and ethyl carboxylic acid
International audience; Four new salts of the iron(II) complex of the 2,6-bis(pyrazol-1-yl)pyridine ligand functionalized with a carboxylic acid group (bppCOOH) of formulas [Fe(bppCOOH)2](BF4)2 (1(BF4)2), [Fe(bppCOOH)2](CF3SO3)2·yMe2CO (1(CF3SO3)2·yMe2CO), [Fe(bppCOOH)2](AsF6)2·yMe2CO (1(AsF6)2·yMe2CO) and [Fe(bppCOOH)2](SbF6)2·yMe2CO (1(SbF6)2·yMe2CO) have been prepared and characterized together with a more complete structural and photomagnetic characterization of the previously reported [Fe(bppCOOH)2](ClO4)2 (1(ClO4)2). Furthermore, the iron(II) complex of the ethyl ester derivative of bppCOOH (bppCOOEt) has been prepared and characterized (compound [Fe(bppCOOEt)2](ClO4)2·yMe2CO, 2(ClO4)…
Spin-crossover complex encapsulation within a magnetic metal-organic framework.
The solid-state incorporation of a mononuclear iron(III) complex within the pores of a magnetic 3D metal–organic framework (MOF) in a single crystal to single crystal process leads to the formation of a new hybrid material showing both a guest-dependent long-range magnetic ordering and a spin-crossover (SCO) behaviour.
A family of layered chiral porous magnets exhibiting tunable ordering temperatures.
A simple change of the substituents in the bridging ligand allows tuning of the ordering temperatures, Tc, in the new family of layered chiral magnets A[M(II)M(III)(X2An)3]·G (A = [(H3O)(phz)3](+) (phz = phenazine) or NBu4(+); X2An(2-) = C6O4X2(2-) = 2,5-dihydroxy-1,4-benzoquinone derivative dianion, with M(III) = Cr, Fe; M(II) = Mn, Fe, Co, etc.; X = Cl, Br, I, H; G = water or acetone). Depending on the nature of X, an increase in Tc from ca. 5.5 to 6.3, 8.2, and 11.0 K (for X = Cl, Br, I, and H, respectively) is observed in the MnCr derivative. Furthermore, the presence of the chiral cation [(H3O)(phz)3](+), formed by the association of a hydronium ion with three phenazine molecules, lead…
One-dimensional and two-dimensional anilate-based magnets with inserted spin-crossover complexes.
The syntheses, structures, and magnetic properties of a family of bimetallic anilate-based compounds with inserted spin-crossover cationic complexes are reported. The structures of 1-4 present a two-dimensional anionic network formed by Mn(II) and Cr(III) ions linked through anilate ligands with inserted [Fe(III)(sal2-trien)](+) (1), [Fe(III)(4-OH-sal2-trien)](+) (2), [Fe(III)(sal2-epe)](+) (3), or [Fe(III)(5-Cl-sal2-trien)](+) (4) complexes. The structure of 5 is formed by anionic [Mn(II)Cl2Cr(III)(Cl2An)3](3-) chains surrounded by [Fe(II)(tren(imid)3)](2+), Cl(-), and solvent molecules. The magnetic properties indicate that 1-4 undergo a long-range ferrimagnetic ordering at ca. 10 K. On t…
Graphene related magnetic materials: micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted [FeIII(acac2-trien)]+ and [FeIII(sal2-trien)]+ molecules
The syntheses, structures and magnetic properties of the coordination compounds of formula [FeIII(acac2-trien)][MnIICrIII(Cl2 An)3]·(CH3CN)2 (1), [FeIII(acac2-trien)][MnIICrIII(Br2An)3]·(CH3CN)2 (2) and [GaIII(acac2-trien)][MnIICrIII(Br2An)3]·(CH3CN)2 (3) are reported. They exhibit a 2D anionic network formed by Mn(II) and Cr(III) ions linked through anilate ligands, while the [FeIII(acac2-trien)]+ or [GaIII(acac2-trien)]+ charge-compensating cations are placed inside the hexagonal channels of the 2D network, instead of being inserted in the interlamellar spacing. Thus, these crystals are formed by hybrid layers assembled through van der Waals interactions. The magnetic properties indicate …
CCDC 1856807: Experimental Crystal Structure Determination
Related Article: Miguel Clemente Leon, Víctor García-López, Mario Palacios-Corella, Alexandre Abhervé, Isaac Pellicer-Carreño, Cédric Desplanches, Eugenio Coronado|2018|Dalton Trans.|47|16958|doi:10.1039/C8DT03511C
CCDC 1835925: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Samia Benmansour, Carlos José Gómez-García, Narcis Avarvari|2018|CrystEngComm|20|4141|doi:10.1039/C8CE00561C
CCDC 1470626: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Alexandre Abhervé, Patricia Gómez-Claramunt, Cristina Vallés-García, Carlos J. Gómez-García|2017|ACS Applied Materials and Interfaces|9|26210|doi:10.1021/acsami.7b08322
CCDC 953847: Experimental Crystal Structure Determination
Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284
CCDC 1856804: Experimental Crystal Structure Determination
Related Article: Miguel Clemente Leon, Víctor García-López, Mario Palacios-Corella, Alexandre Abhervé, Isaac Pellicer-Carreño, Cédric Desplanches, Eugenio Coronado|2018|Dalton Trans.|47|16958|doi:10.1039/C8DT03511C
CCDC 1856814: Experimental Crystal Structure Determination
Related Article: Miguel Clemente Leon, Víctor García-López, Mario Palacios-Corella, Alexandre Abhervé, Isaac Pellicer-Carreño, Cédric Desplanches, Eugenio Coronado|2018|Dalton Trans.|47|16958|doi:10.1039/C8DT03511C
CCDC 1945945: Experimental Crystal Structure Determination
Related Article: Suchithra Ashoka Sahadevan, Alexandre Abhervé, Noemi Monni, Pascale Auban-Senzier, Joan Cano, Francesc Lloret, Miguel Julve, Hengbo Cui, Reizo Kato, Enric Canadell, Maria Laura Mercuri, Narcis Avarvari|2019|Inorg.Chem.|58|15359|doi:10.1021/acs.inorgchem.9b02404
CCDC 1835922: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Samia Benmansour, Carlos José Gómez-García, Narcis Avarvari|2018|CrystEngComm|20|4141|doi:10.1039/C8CE00561C
CCDC 1856808: Experimental Crystal Structure Determination
Related Article: Miguel Clemente Leon, Víctor García-López, Mario Palacios-Corella, Alexandre Abhervé, Isaac Pellicer-Carreño, Cédric Desplanches, Eugenio Coronado|2018|Dalton Trans.|47|16958|doi:10.1039/C8DT03511C
CCDC 973768: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Juan Modesto Clemente-Juan, Miguel Clemente-León, Eugenio Coronado, Jaursup Boonmak, Sujittra Youngme|2014|New J.Chem.|38|2105|doi:10.1039/C3NJ01516E
CCDC 1856805: Experimental Crystal Structure Determination
Related Article: Miguel Clemente Leon, Víctor García-López, Mario Palacios-Corella, Alexandre Abhervé, Isaac Pellicer-Carreño, Cédric Desplanches, Eugenio Coronado|2018|Dalton Trans.|47|16958|doi:10.1039/C8DT03511C
CCDC 1054373: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Samuel Mañas-Valero, Miguel Clemente-León, Eugenio Coronado|2015|Chemical Science|6|4665|doi:10.1039/C5SC00957J
CCDC 1470627: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Alexandre Abhervé, Patricia Gómez-Claramunt, Cristina Vallés-García, Carlos J. Gómez-García|2017|ACS Applied Materials and Interfaces|9|26210|doi:10.1021/acsami.7b08322
CCDC 1856813: Experimental Crystal Structure Determination
Related Article: Miguel Clemente Leon, Víctor García-López, Mario Palacios-Corella, Alexandre Abhervé, Isaac Pellicer-Carreño, Cédric Desplanches, Eugenio Coronado|2018|Dalton Trans.|47|16958|doi:10.1039/C8DT03511C
CCDC 1054374: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Samuel Mañas-Valero, Miguel Clemente-León, Eugenio Coronado|2015|Chemical Science|6|4665|doi:10.1039/C5SC00957J
CCDC 973767: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Juan Modesto Clemente-Juan, Miguel Clemente-León, Eugenio Coronado, Jaursup Boonmak, Sujittra Youngme|2014|New J.Chem.|38|2105|doi:10.1039/C3NJ01516E
CCDC 1835924: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Samia Benmansour, Carlos José Gómez-García, Narcis Avarvari|2018|CrystEngComm|20|4141|doi:10.1039/C8CE00561C
CCDC 1835923: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Samia Benmansour, Carlos José Gómez-García, Narcis Avarvari|2018|CrystEngComm|20|4141|doi:10.1039/C8CE00561C
CCDC 1058520: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Mario Palacios-Corella, Juan Modesto Clemente-Juan, Raphael Marx, Petr Neugebauer, Joris van Slageren, Miguel Clemente-León, Eugenio Coronado|2015|J.Mater.Chem.C|3|7936|doi:10.1039/C5TC01089F
CCDC 1856809: Experimental Crystal Structure Determination
Related Article: Miguel Clemente Leon, Víctor García-López, Mario Palacios-Corella, Alexandre Abhervé, Isaac Pellicer-Carreño, Cédric Desplanches, Eugenio Coronado|2018|Dalton Trans.|47|16958|doi:10.1039/C8DT03511C
CCDC 1486674: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, María José Recio-Carretero, Maurici López-Jordà, Juan Modesto Clemente-Juan, Josep Canet-Ferrer, Andrés Cantarero, Miguel Clemente-León, and Eugenio Coronado|2016|Inorg.Chem.|55|9361|doi:10.1021/acs.inorgchem.6b01508
CCDC 977453: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Miguel Clemente-León, Eugenio Coronado, Carlos J. Gómez-García, Maurici López-Jordà|2014|Dalton Trans.|43|9406|doi:10.1039/C4DT00327F
CCDC 1058519: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Mario Palacios-Corella, Juan Modesto Clemente-Juan, Raphael Marx, Petr Neugebauer, Joris van Slageren, Miguel Clemente-León, Eugenio Coronado|2015|J.Mater.Chem.C|3|7936|doi:10.1039/C5TC01089F
CCDC 953846: Experimental Crystal Structure Determination
Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284
CCDC 1856812: Experimental Crystal Structure Determination
Related Article: Miguel Clemente Leon, Víctor García-López, Mario Palacios-Corella, Alexandre Abhervé, Isaac Pellicer-Carreño, Cédric Desplanches, Eugenio Coronado|2018|Dalton Trans.|47|16958|doi:10.1039/C8DT03511C
CCDC 973770: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Juan Modesto Clemente-Juan, Miguel Clemente-León, Eugenio Coronado, Jaursup Boonmak, Sujittra Youngme|2014|New J.Chem.|38|2105|doi:10.1039/C3NJ01516E
CCDC 1835927: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Samia Benmansour, Carlos José Gómez-García, Narcis Avarvari|2018|CrystEngComm|20|4141|doi:10.1039/C8CE00561C
CCDC 1856811: Experimental Crystal Structure Determination
Related Article: Miguel Clemente Leon, Víctor García-López, Mario Palacios-Corella, Alexandre Abhervé, Isaac Pellicer-Carreño, Cédric Desplanches, Eugenio Coronado|2018|Dalton Trans.|47|16958|doi:10.1039/C8DT03511C
CCDC 1054372: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Samuel Mañas-Valero, Miguel Clemente-León, Eugenio Coronado|2015|Chemical Science|6|4665|doi:10.1039/C5SC00957J
CCDC 973771: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Juan Modesto Clemente-Juan, Miguel Clemente-León, Eugenio Coronado, Jaursup Boonmak, Sujittra Youngme|2014|New J.Chem.|38|2105|doi:10.1039/C3NJ01516E
CCDC 1486675: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, María José Recio-Carretero, Maurici López-Jordà, Juan Modesto Clemente-Juan, Josep Canet-Ferrer, Andrés Cantarero, Miguel Clemente-León, and Eugenio Coronado|2016|Inorg.Chem.|55|9361|doi:10.1021/acs.inorgchem.6b01508
CCDC 1856810: Experimental Crystal Structure Determination
Related Article: Miguel Clemente Leon, Víctor García-López, Mario Palacios-Corella, Alexandre Abhervé, Isaac Pellicer-Carreño, Cédric Desplanches, Eugenio Coronado|2018|Dalton Trans.|47|16958|doi:10.1039/C8DT03511C
CCDC 1945944: Experimental Crystal Structure Determination
Related Article: Suchithra Ashoka Sahadevan, Alexandre Abhervé, Noemi Monni, Pascale Auban-Senzier, Joan Cano, Francesc Lloret, Miguel Julve, Hengbo Cui, Reizo Kato, Enric Canadell, Maria Laura Mercuri, Narcis Avarvari|2019|Inorg.Chem.|58|15359|doi:10.1021/acs.inorgchem.9b02404
CCDC 1856806: Experimental Crystal Structure Determination
Related Article: Miguel Clemente Leon, Víctor García-López, Mario Palacios-Corella, Alexandre Abhervé, Isaac Pellicer-Carreño, Cédric Desplanches, Eugenio Coronado|2018|Dalton Trans.|47|16958|doi:10.1039/C8DT03511C
CCDC 953848: Experimental Crystal Structure Determination
Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284
CCDC 973769: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Juan Modesto Clemente-Juan, Miguel Clemente-León, Eugenio Coronado, Jaursup Boonmak, Sujittra Youngme|2014|New J.Chem.|38|2105|doi:10.1039/C3NJ01516E
CCDC 1835926: Experimental Crystal Structure Determination
Related Article: Alexandre Abhervé, Samia Benmansour, Carlos José Gómez-García, Narcis Avarvari|2018|CrystEngComm|20|4141|doi:10.1039/C8CE00561C
CCDC 953849: Experimental Crystal Structure Determination
Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284