6533b7d8fe1ef96bd126b748
RESEARCH PRODUCT
Magnetic Molecular Conductors Based on Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and the Tris(chlorocyananilato)ferrate(III) Complex
Enric CanadellAlexandre AbhervéMaria Laura MercuriMiguel JulveNarcis AvarvariPascale Auban-senzierNoemi MonniJoan CanoFrancesc LloretSuchithra Ashoka SahadevanSuchithra Ashoka SahadevanHengbo CuiReizo Katosubject
Crystal structure010402 general chemistry01 natural sciencesInorganic Chemistrychemistry.chemical_compoundParamagnetismMolecular interactionsMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical Chemistry010405 organic chemistry[CHIM.MATE]Chemical Sciences/Material chemistryMolecules3. Good health0104 chemical sciencesSolventCrystallographyMonomerchemistryRadical ionOligomersCrystal structuresSolventsStoichiometryTetrathiafulvalenedescription
Electrocrystallization of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) organic donor in the presence of the [Fe(ClCNAn)3]3– tris(chlorocyananilato)ferrate(III) paramagnetic anion in different stoichiometric ratios and solvent mixtures afforded two different hybrid systems formulated as [BEDT-TTF]4[Fe(ClCNAn)3]·3H2O (1) and [BEDT-TTF]5[Fe(ClCNAn)3]2·2CH3CN (2) (An = anilato). Compounds 1 and 2 present unusual structures without the typical segregated organic and inorganic layers, where layers of 1 are formed by Λ and Δ enantiomers of the anionic paramagnetic complex together with mixed-valence BEDT-TTF tetramers, while layers of 2 are formed by Λ and Δ enantiomers of the paramagnetic complex together with dicationic BEDT-TTF dimers and monomers. Compounds 1 and 2 show semiconducting behaviors with room-temperature conductivities of ca. 6 × 10–3 S cm–1 (ambient pressure) and 1 × 10–3 S cm–1 (under applied pressure of 12.1 GPa), respectively, due to strong dimerization between the donors. Magnetic measurements performed on compound 1 indicate weak antiferromagnetic coupling between high-spin FeIII (SFe = 5/2) and mixed-valence radical cation diyads (BEDT-TTF)2+ (Srad = 1/2) mediated by the anilate ligands, together with an important Pauli paramagnetism typical for conducting systems.
year | journal | country | edition | language |
---|---|---|---|---|
2019-11-06 | Inorganic Chemistry |