0000000000125760

AUTHOR

P. Veda Bhanu

Flexible Spare Core Placement in Torus Topology based NoCs and its validation on an FPGA

In the nano-scale era, Network-on-Chip (NoC) interconnection paradigm has gained importance to abide by the communication challenges in Chip Multi-Processors (CMPs). With increased integration density on CMPs, NoC components namely cores, routers, and links are susceptible to failures. Therefore, to improve system reliability, there is a need for efficient fault-tolerant techniques that mitigate permanent faults in NoC based CMPs. There exists several fault-tolerant techniques that address the permanent faults in application cores while placing the spare cores onto NoC topologies. However, these techniques are limited to Mesh topology based NoCs. There are few approaches that have realized …

research product

Fault-Tolerant Application Mapping on to ZMesh topology based Network-on-Chip Design

This paper proposes Particle Swarm Optimization (PSO) based fault-tolerant application mapping on to ZMesh topology based Network-on-Chip (NoC) design. Permanent faults in application cores has been considered and performed application mapping using PSO. The major contribution of this paper is to find out the best position for the spare core to be placed in the network using PSO. Experimentations have been carried out by scaling the ZMesh network size and percentage of network faults. The results show that the proposed approach leads to minimum overhead in communication cost over fault-free result.

research product

Fault Tolerant Routing Methodology for Mesh-of-Tree based Network-on-Chips using Local Reconfiguration

Increase in the processing elements in a System-on- Chip (SoC) has led to an increasing complexity between the cores in the entire network. This communication bottleneck led to rise in the new paradigm called Network-on-Chip (NoC). These NoC are very much susceptible to various types of faults which can be transient, intermittent or permanent. This paper presents a fault-tolerant routing technique which can route the packets from a source to a destination in presence of permanent faults in the leaf routers of Mesh-of-Tree topology where cores are connected. This is achieved by using reconfiguration in the local ports of the leaf routers by inserting multiplexers as a layer between the leaf …

research product

Fault-Tolerant Network-on-Chip Design for Mesh-of-Tree Topology Using Particle Swarm Optimization

As the size of the chip is scaling down the density of Intellectual Property (IP) cores integrated on a chip has been increased rapidly. The communication between these IP cores on a chip is highly challenging. To overcome this issue, Network-on-Chip (NoC) has been proposed to provide an efficient and a scalable communication architecture. In the deep sub-micron level NoCs are prone to faults which can occur in any component of NoC. To build a reliable and robust systems, it is necessary to apply efficient fault-tolerant techniques. In this paper, we present a flexible spare core placement in Mesh-of-Tree (MoT) topology using Particle Swarm Optimization (PSO) by considering IP core failures…

research product

Multi-application Based Fault-Tolerant Network-on-Chip Design for Mesh Topology Using Reconfigurable Architecture

In this paper, we propose a two-step fault-tolerant approach to address the faults occurred in cores. In the first stage, a Particle Swarm Optimization (PSO) based approach has been proposed for the fault-tolerant mapping of multiple applications on to the mesh based reconfigurable architecture by introducing spare cores and a heuristic has been proposed for the reconfiguration in the second stage. The proposed approach has been experimented by taking several benchmark applications into consideration. Communication cost comparisons have been carried out by taking the failed cores as user input and the experimental results show that our approach could get improvements in terms of communicati…

research product

Novel Fault-Tolerant Routing Technique for ZMesh Topology based Network-on-Chip Design

This paper proposes a novel fault-tolerant routing technique for ZMesh topology based Network-on-Chip (NoC) design. The proposed algorithm caters the link faults and routes the data packets seamlessly to the destination. This algorithm has been compared with the existing techniques proposed for mesh topology counterparts. The experimentations have been carried out by increasing ZMesh network size and percentage of link faults. The results show that in the event of link failures the proposed algorithm routes the data from source to destination flawlessly.

research product

Fault-Tolerant Network-on-Chip Design for Mesh-of-Tree Topology Using Particle Swarm Optimization

Nivå1

research product

A Novel Fault-Tolerant Routing Technique for Mesh-of-Tree based Network-on-Chip Design

Due to the increase in the number of processing elements in System-on-Chips (SoCs), communication between the cores is becoming complex. A solution to this issue in SoCs gave rise to a new paradigm called Network-on-Chips (NoCs). In NoCs, communication between different cores is achieved using packet based switching techniques. In the deep sub-micron technology, NoCs are more susceptible to different kinds of faults which can be transient, intermittent and permanent. These faults can occur at any component of NoCs. This paper presents a novel Fault-Tolerant Routing (FTR) technique for Mesh-of-Tree (MoT) topology in the presence of router faults. The proposed technique is compared with routi…

research product

Torus Topology based Fault-Tolerant Network-on-Chip Design with Flexible Spare Core Placement

The increase in the density of the IP cores being fabricated on a chip poses on-chip communication challenges and heat dissipation. To overcome these issues, Network-onChip (NoC) based communication architecture is introduced. In the nanoscale era NoCs are prone to faults which results in performance degradation and un-reliability. Hence efficient fault-tolerant methods are required to make the system reliable in contrast to diverse component failures. This paper presents a flexible spare core placement in torus topology based faulttolerant NoC design. The communications related to the failed core is taken care by selecting the best position for a spare core in the torus network. By conside…

research product

A Novel Fault-Tolerant Routing Algorithm for Mesh-of-Tree Based Network-on-Chips

Use of bus architecture based communication with increasing processing elements in System-on-Chip (SoC) leads to severe degradation of performance and speed of the system. This bottleneck is overcome with the introduction of Network-on-Chips (NoCs). NoCs assist in communication between cores on a single chip using router based packet switching technique. Due to miniaturization, NoCs like every Integrated circuit is prone to different kinds of faults which can be transient, intermittent or permanent. A fault in any one component of such a crucial network can degrade performance leaving other components non-usable. This paper presents a novel Fault-Tolerant routing Algorithm for Mesh-of-Tree …

research product

Multi-application Based Network-on-Chip Design for Mesh-of-Tree Topology Using Global Mapping and Reconfigurable Architecture

This paper outlines a multi-application mapping for Mesh-of-Tree (MoT) topology based Network-on-Chip (NoC) design using reconfigurable architecture. A two phase Particle Swarm Optimization (PSO) has been proposed for reconfigurable architecture to minimize the communication cost. In first phase global mapping is done by combining multiple applications and in second phase, reconfiguration is achieved by switching the cores to near by routers using multiplexers. Experimentations have been carried out for several application benchmarks and synthetic applications generated using TGFF tool. The results show significant improvement in terms of communication cost after reconfiguration.

research product

Architectural Implementation of a Reconfigurable NoC Design for Multi-Applications

With the increasing number of applications running on a Network-on-Chip (NoC) based System-on-Chip (SoC), there is a need for designing a reconfigurable NoC platform to achieve acceptable performance for all the applications. This paper proposes a novel architecture for implementing a reconfiguration logic to the NoC platform executing multiple applications. The proposed architecture reconfigures SoC modules to the routers in the NoC with the help of tri-state buffers based on the applications running. The overhead in implementing the reconfiguration circuitry is significantly less, approximately 0.9% of the area and 1% of the total power consumed by the router network. The architectures pr…

research product

Reinforcement Learning based Fault-Tolerant Routing Algorithm for Mesh based NoC and its FPGA Implementation

Network-on-Chip (NoC) has emerged as the most promising on-chip interconnection framework in Multi-Processor System-on-Chips (MPSoCs) due to its efficiency and scalability. In the deep submicron level, NoCs are vulnerable to faults, which leads to the failure of network components such as links and routers. Failures in NoC components diminish system efficiency and reliability. This paper proposes a Reinforcement Learning based Fault-Tolerant Routing (RL-FTR) algorithm to tackle the routing issues caused by link and router faults in the mesh-based NoC architecture. The efficiency of the proposed RL-FTR algorithm is examined using System-C based cycle-accurate NoC simulator. Simulations are c…

research product

Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on an FPGA

Application-Specific Networks-on-Chips (ASNoCs) are suitable communication platforms for meeting current application requirements. Interconnection links are the primary components involved in communication between the cores of an ASNoC design. The integration density in ASNoC increases with continuous scaling down of the transistor size. Excessive integration density in ASNoC can result in the formation of thermal hotspots, which can cause a system to fail permanently. As a result, fault-tolerant techniques are required to address the permanent faults in interconnection links of an ASNoC design. By taking into account link faults in the topology, this paper introduces a fault-tolerant appli…

research product