0000000000136836

AUTHOR

Elena Piacenza

0000-0003-1929-1031

Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures

In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids…

research product

Cross-linked natural IntegroPectin films from citrus biowaste with intrinsic antimicrobial activity

AbstractPectin recovered via hydrodynamic cavitation (IntegroPectin) from lemon and grapefruit agri-food waste intrinsically containing antimicrobial bioactive substances (flavonoids, phenolic acids, terpenes, and terpenoids) was used to generate innovative and eco-compatible films that efficiently inhibit the growth of Gram-negative pathogens. Extensive characterization of films confirmed the presence of these substances, which differently interact with the polysaccharide polymer (pectin), plasticizer (glycerol), surfactant (Tween 60), and cross-linker (Ca2+), conferring to these films a unique structure. Besides, IntegroPectin-based films constitute versatile systems for the sustained, co…

research product

Physical–chemical properties of biogenic selenium nanostructures produced by stenotrophomonas maltophilia SeITE02 and ochrobactrum sp. MPV1

Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1 were isolated from the rhizosphere soil of the selenium-hyperaccumulator legume Astragalus bisulcatus and waste material from a dumping site for roasted pyrites, respectively. Here, these bacterial strains were studied as cell factories to generate selenium-nanostructures (SeNS) under metabolically controlled growth conditions. Thus, a defined medium (DM) containing either glucose or pyruvate as carbon and energy source along with selenite (SeO23−) was tested to evaluate bacterial growth, oxyanion bioconversion and changes occurring in SeNS features with respect to those generated by these strains grown on rich media. Transmissi…

research product

Processing of metals and metalloids by actinobacteria: Cell resistance mechanisms and synthesis of metal(loid)-based nanostructures

Metal(loid)s have a dual biological role as micronutrients and stress agents. A few geochemical and natural processes can cause their release in the environment, although most metal-contaminated sites derive from anthropogenic activities. Actinobacteria include high GC bacteria that inhabit a wide range of terrestrial and aquatic ecological niches, where they play essential roles in recycling or transforming organic and inorganic substances. The metal(loid) tolerance and/or resistance of several members of this phylum rely on mechanisms such as biosorption and extracellular sequestration by siderophores and extracellular polymeric substances (EPS), bioaccumulation, biotransformation, and me…

research product

Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1

The wide anthropogenic use of selenium compounds represents the major source of selenium pollution world- wide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/ metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO32−) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO32− with…

research product

Antimicrobial activity of biogenically produced spherical Se-nanomaterials embedded in organic material against Pseudomonas aeruginosa and Staphylococcus aureus strains on hydroxyapatite-coated surfaces

In an effort to prevent the formation of pathogenic biofilms on hydroxyapatite (HA)-based clinical devices and surfaces, we present a study evaluating the antimicrobial efficacy of Spherical biogenic Se-Nanostructures Embedded in Organic material (Bio Se-NEMO-S) produced by Bacillus mycoides SelTE01 in comparison with two different chemical selenium nanoparticle (SeNP) classes. These nanomaterials have been studied as potential antimicrobials for eradication of established HA-grown biofilms, for preventing biofilm formation on HA-coated surfaces and for inhibition of planktonic cell growth of Pseudomonas aeruginosa NCTC 12934 and Staphylococcus aureus ATCC 25923. Bio Se-NEMO resulted more e…

research product

Tolerance, Adaptation, and Cell Response Elicited by Micromonospora sp. Facing Tellurite Toxicity: A Biological and Physical-Chemical Characterization

The intense use of tellurium (Te) in industrial applications, along with the improper disposal of Te-derivatives, is causing their accumulation in the environment, where oxyanion tellurite (TeO32−) is the most soluble, bioavailable, and toxic Te-species. On the other hand, tellurium is a rare metalloid element whose natural supply will end shortly with possible economic and technological effects. Thus, Te-containing waste represents the source from which Te should be recycled and recovered. Among the explored strategies, the microbial TeO32− biotransformation into less toxic Te-species is the most appropriate concerning the circular economy. Actinomycetes are ideal candidates in…

research product

Differentiation among dairy products by combination of fast field cycling NMR relaxometry data and chemometrics

A set of commercial milk and Sicilian cheeses was analysed by a combination of fast field cycling (FFC) nuclear magnetic resonance (NMR) relaxometry and chemometrics. The NMR dispersion (NMRD) curves were successfully analysed with a mathematical model applied on Parmigiano-Reggiano (PR) cheese. Regression parameters were led back to the molecular components of cheeses (water trapped in casein micelles, proteins and fats) and milk samples (water belonging to hydration shells around dispersed colloidal particles of different sizes and bulk water). The application of chemometric analysis on relaxometric data enabled differentiating milk from cheeses and revealing differences within the two sa…

research product

A multivariate statistical and relaxometry approach to study the provenance and traceability of dairy products

research product

Selenium and tellurium nanomaterials

Abstract Over the last 40 years, the rapid and exponential growth of nanotechnology led to the development of various synthesis methodologies to generate nanomaterials different in size, shape and composition to be applied in various fields. In particular, nanostructures composed of Selenium (Se) or Tellurium (Te) have attracted increasing interest, due to their intermediate nature between metallic and non-metallic elements, being defined as metalloids. Indeed, this key shared feature of Se and Te allows us the use of their compounds in a variety of applications fields, such as for manufacturing photocells, photographic exposure meters, piezoelectric devices, and thermoelectric materials, t…

research product

FDA dimension reduction techniques and components separation in Fourier-transform infrared spectroscopy

FTIR spectroscopy is a measurement technique used to obtain an infrared spectrum of absorption of a solid (or a liquid or a gas), for the characterization of specific chemical components of materials. When repeated measures are taken on samples of materials, the result is a collection of spectra representing a set of samples from continous functions (signals) defined in the domain of the frequencies. An unifying approach to the study of a collection of FTIR spectra is proposed to deal with the presence of random shifts in the peaks, the identification of representative spectra and finally the characterization of the observed differences: in the functional data framework, the performance of …

research product

Mesoporous Silica-Based Materials with Bactericidal Properties

[EN] Bacterial infections are the main cause of chronic infections and even mortality. In fact, due to extensive use of antibiotics and, then, emergence of antibiotic resistance, treatment of such infections by conventional antibiotics has become a major concern worldwide. One of the promising strategies to treat infection diseases is the use of nanomaterials. Among them, mesoporous silica materials (MSMs) have attracted burgeoning attention due to high surface area, tunable pore/particle size, and easy surface functionalization. This review discusses how one can exploit capacities of MSMs to design and fabricate multifunctional/controllable drug delivery systems (DDSs) to combat bacterial …

research product

Biotechnology of Rhodococcus for the production of valuable compounds

Abstract Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production o…

research product

A combined physical-chemical and microbiological approach to unveil the fabrication, provenance, and state of conservation of the Kinkarakawa-gami art.

AbstractKinkarakawa-gami wallpapers are unique works of art produced in Japan between 1870 and 1905 and exported in European countries, although only few examples are nowadays present in Europe. So far, neither the wallpapers nor the composing materials have been characterised, limiting the effective conservation–restoration of these artefacts accounting also for the potential deteriogen effects of microorganisms populating them. In the present study, four Kinkarakawa-gami wallpapers were analysed combining physical–chemical and microbiological approaches to obtain information regarding the artefacts’ manufacture, composition, dating, and their microbial community. The validity of these met…

research product

Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources

Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL−1 . The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survi…

research product

Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1

AbstractTellurite (TeO32−) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32− into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32−, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assem…

research product

Untargeted Metabolomics Investigation on Selenite Reduction to Elemental Selenium by Bacillus mycoides SeITE01

Bacillus mycoides SeITE01 is an environmental isolate that transforms the oxyanion selenite (SeO32−) into the less bioavailable elemental selenium (Se0) forming biogenic selenium nanoparticles (Bio-SeNPs). In the present study, the reduction of sodium selenite (Na2SeO3) by SeITE01 strain and the effect of SeO32− exposure on the bacterial cells was examined through untargeted metabolomics. A time-course approach was used to monitor both cell pellet and cell free spent medium (referred as intracellular and extracellular, respectively) metabolites in SeITE01 cells treated or not with SeO32−. The results show substantial biochemical changes in SeITE01 cells when exposed to SeO32−. The initial u…

research product

Bone diagenesis of archaeological human remains from Apulia (Italy) investigated by ATR-FTIR and XRF spectroscopy

The analysis of the organic and mineral content of biological samples allows to define post-mortem alterations and the preservation status of ancient human remains. Here, we report a physical-chemical characterization of bone specimens from some skeletal remains found in Apulia (Italy) dating back to the prehistoric, classic-hellenistic, and medieval periods. Specific infrared band ratios from Attenuated Total Reflectance-Fourier Transform InfraRed and X-ray fluorescence spectroscopies were considered to evaluate the extent of the diagenetic process and the elemental composition of bone.Physical-chemical post-mortem transformations were related to the soil composition and specificity of tis…

research product

A New Water-Soluble Bactericidal Agent for the Treatment of Infections Caused by Gram-Positive and Gram-Negative Bacterial Strains

Grapefruit and lemon pectin obtained from the respective waste citrus peels via hydrodynamic cavitation in water only are powerful, broad-scope antimicrobials against Gram-negative and -positive bacteria. Dubbed IntegroPectin, these pectic polymers functionalized with citrus flavonoids and terpenes show superior antimicrobial activity when compared to commercial citrus pectin. Similar to commercial pectin, lemon IntegroPectin determined ca. 3-log reduction in Staphylococcus aureus cells, while an enhanced activity of commercial citrus pectin was detected in the case of Pseudomonas aeruginosa cells with a minimal bactericidal concentration (MBC) of 15 mg mL&minus

research product

Volatile Compounds of Lemon and Grapefruit IntegroPectin

An HS-SPME GC-MS analysis of the volatile compounds adsorbed at the outer surface of lemon and grapefruit pectins obtained via the hydrodynamic cavitation of industrial waste streams of lemon and grapefruit peels in water suggests important new findings en route to understanding the powerful and broad biological activity of these new pectic materials. In agreement with the ultralow degree of esterification of these pectins, the high amount of highly bioactive &alpha

research product

New hydroxyapatite- and selenium-based nanoformulations as potential antimicrobial tools for orthopedic implants

research product

Biogenic Selenium Nanoparticles: A Fine Characterization to Unveil Their Thermodynamic Stability

Among the plethora of available metal(loid) nanomaterials (NMs), those containing selenium are interesting from an applicative perspective, due to their high biocompatibility. Microorganisms capable of coping with toxic Se-oxyanions generate mostly Se nanoparticles (SeNPs), representing an ideal and green alternative over the chemogenic synthesis to obtain thermodynamically stable NMs. However, their structural characterization, in terms of biomolecules and interactions stabilizing the biogenic colloidal solution, is still a black hole that impairs the exploitation of biogenic SeNP full potential. Here, spherical and thermodynamically stable SeNPs were produced by a metal(loid) tolerant Mic…

research product

Influence of bacterial physiology on processing of selenite, biogenesis of nanomaterials and their thermodynamic stability

We explored how Ochrobactrum sp. MPV1 can convert up to 2.5 mM selenite within 120 h, surviving the challenge posed by high oxyanion concentrations. The data show that thiol-based biotic chemical reaction(s) occur upon bacterial exposure to low selenite concentrations, whereas enzymatic systems account for oxyanion removal when 2 mM oxyanion is exceeded. The selenite bioprocessing produces selenium nanomaterials, whose size and morphology depend on the bacterial physiology. Selenium nanoparticles were always produced by MPV1 cells, featuring an average diameter ranging between 90 and 140 nm, which we conclude constitutes the thermodynamic stability range for these nanostructures. Alternativ…

research product

Reduced graphene oxide/silver nanoparticles/β-cyclodextrin nanosponges composites with improved photocatalytic activity

Significant activity improvement was achieved by associating graphene oxide-silver composite photocatalysts with cyclodextrin-based nanosponge materials, due to the synergistic effect provided by the supramolecular host abilities of the nanosponge. Three photocatalysts were prepared, fully characterized (FT-IR, ss-NMR, Raman, XRD, SEM, EDX, AFM, ICP, TGA, potentiometric titration), and tested for the oxidative photodegradation of some dyes and phenols, chosen as model organic pollutants. Compared to the unsupported photocatalyst, the nanosponge-based materials showed enhanced performances (being able to carry out the degradation even of dyes which do not react in the presence of the unsuppo…

research product

Chemogenic versus biogenic synthesis of Selenium nanoparticles: a structural characterization

Among the plethora of available metal- and metalloid-based nanomaterials (NMs), selenium nanostructures (SeNSs) are one of the most interesting from an applicative perspective due to their intermediate properties between metals and non-metals, as well as their high biocompatibility. In this regard, the capability of microorganisms to biotransform toxic Se-oxyanions – i.e., selenite (SeO32-) and selenate (SeO42-) – into their less bioavailable elemental forms [Se(0)], mostly generating Se nanoparticles (SeNPs), represents as a useful and green alternative over chemogenic synthesis allowing to obtain highly thermodynamically stable NMs. However, their structural characterization, in terms of …

research product

Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions

Tellurite (TeO3 2−) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO3 2− into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO3 2−-reducing bacteria can lead to the decontamination of polluted environments and the development of “green-synthesis” methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO3 2− have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Aerobically …

research product

Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles

Bacteria have developed different mechanisms for the transformation of metalloid oxyanions to non-toxic chemical forms. A number of bacterial isolates so far obtained in axenic culture has shown the ability to bioreduce selenite and tellurite to the elemental state in different conditions along with the formation of nanoparticles—both inside and outside the cells—characterized by a variety of morphological features. This reductive process can be considered of major importance for two reasons: firstly, toxic and soluble (i.e. bioavailable) compounds such as selenite and tellurite are converted to a less toxic chemical forms (i.e. zero valent state); secondly, chalcogen nanoparticles have att…

research product

Tunable photoluminescence properties of selenium nanoparticles: biogenic versus chemogenic synthesis

Abstract Various technological and biomedical applications rely on the ability of materials to emit light (photoluminescence [PL]), and, among them, metal nanoparticles (NPs) and semi-conductor Quantum Dots (QDs) represent ideal candidates as sensing probes and imaging tools, portraying better PL features than conventional organic dyes. However, the knowledge of PL behavior of semiconductor NPs – i.e., selenium; SeNPs – is still in its infancy, especially for those synthesized by microorganisms. Considering the essential role played by biogenic SeNPs as antimicrobial, anticancer, and antioxidant agents, or food supplements, their PL properties must be explored to take full advantage of them…

research product