0000000000141641
AUTHOR
Maris Tali
Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs
In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…
Mechanisms of Electron-Induced Single-Event Latchup
In this paper, possible mechanisms by which electrons can induce single-event latchups in electronics are discussed. The energy deposition and the nuclear fragments created by electrons in silicon are analyzed in this context. The cross section enhancement effect in the presence of high-Z materials is discussed. First experimental results of electron-induced latchups are shown in static random access memory devices with low linear energy transfer thresholds. The radiation hardness assurance implications and future work are discussed.
Mechanisms of Electron-Induced Single Event Upsets in Medical and Experimental Linacs
In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…
Risk Assessment of Electron Induced SEE during the JUICE Mission
The SEE sensitivity of electronic devices to high energy electrons has been put in evidence experimentally. Several ground experiments have shown that electron induced SEE could occur in recent technologies. In the case of the JUICE mission, the expected electron environment is harsher than for Earth orbits. The impact of such electron fluxes on the embedded electronics was assessed in this work. The study focused on SRAM memories SEU sensitivity. Three different device references were tested under electrons, as well as under protons and heavy ions. The electron and the low energy proton direct ionization contributions to the total SEU rate have been studied in more detail.
Assessment of Proton Direct Ionization for the Radiation Hardness Assurance of Deep Submicron SRAMs Used in Space Applications
Proton direct ionization from low-energy protons has been shown to have a potentially significant impact on the accuracy of prediction methods used to calculate the upset rates of memory devices in space applications for state-of-the-art deep sub-micron technologies. The general approach nowadays is to consider a safety margin to apply over the upset rate computed from high-energy proton and heavy ion experimental data. The data reported here present a challenge to this approach. Different upset rate prediction methods are used and compared in order to establish the impact of proton direct ionization on the total upset rate. No matter the method employed the findings suggest that proton dir…
CERN IRRADIATION FACILITIES.
CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics.
Direct Ionization Impact on Accelerator Mixed-Field Soft-Error Rate
We investigate, through measurements and simulations, the possible direct ionization impact on the accelerator soft-error rate (SER), not considered in standard qualification approaches. Results show that, for a broad variety of state-of-the-art commercial components considered in the 65-16-nm technological range, indirect ionization is still expected to dominate the overall SER in the accelerator mixed-field. However, the derived critical charges of the most sensitive parts, corresponding to ~0.7 fC, are expected to be at the limit of rapid direct ionization dominance and soft-error increase.
High-Energy Electron-Induced SEUs and Jovian Environment Impact
We present experimental evidence of electron-induced upsets in a reference European Space Agency (ESA) single event upset (SEU) monitor, induced by a 200-MeV electron beam at the Very energetic Electronic facility for Space Planetary Exploration in harsh Radiation environments facility at CERN. Comparison of experimental cross sections and simulated cross sections is shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons, flash effects, and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. The ESA Jupiter Icy Moons Explorer mission, to be launched in 2022, presents a challenging radiat…
SEU characterization of commercial and custom-designed SRAMs based on 90 nm technology and below
International audience; The R2E project at CERN has tested a few commercial SRAMs and a custom-designed SRAM, whose data are complementary to various scientific publications. The experimental data include low- and high-energy protons, heavy ions, thermal, intermediate- and high-energy neutrons, high-energy electrons and high-energy pions.
Mechanisms of Electron-Induced Single Event Latchup
In this paper, possible mechanisms by which electrons can induce single-event latchups in electronics are discussed. The energy deposition and the nuclear fragments created by electrons in silicon are analyzed in this context. The cross section enhancement effect in the presence of high-Z materials is discussed. First experimental results of electron-induced latchups are shown in static random access memory devices with low linear energy transfer thresholds. The radiation hardness assurance implications and future work are discussed. peerReviewed
Mono-energetic electron induced single-event effects at the VESPER facility
We present experimental evidence of electron induced upsets in a reference ESA SEU monitor, the SEU based particle detector, induced by 200 MeV electron beam at the VESPER facility at CERN. Comparison of experimental cross sections and simulated cross sections are shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. Insight is given as to possible overall electron contribution to the upset rates in the Jovian radiation environment inside a typical spacecraft shielding are evaluated.