0000000000144347

AUTHOR

Jevgeny Klochan

Quantum dot state initialization by control of tunneling rates

We study the loading of electrons into a quantum dot with dynamically controlled tunnel barriers. We introduce a method to measure tunneling rates for individual discrete states and to identify their relaxation paths. Exponential selectivity of the tunnel coupling enables loading into specific quantum dot states by tuning independently energy and rates. While for the single-electron case orbital relaxation leads to fast transition into the ground state, for electron pairs triplet-to-singlet relaxation is suppressed by long spin-flip times. This enables the fast gate-controlled initialization of either a singlet or a triplet electron pair state in a quantum dot with broad potential applicati…

research product

Gigahertz Single-Electron Pumping Mediated by Parasitic States

In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achi…

research product

Design and operation of CMOS-compatible electron pumps fabricated with optical lithography

We report CMOS-compatible quantized current sources (electron pumps) fabricated with nanowires (NWs) on 300mm SOI wafers. Unlike other Al, GaAs or Si based metallic or semiconductor pumps, the fabrication does not rely on electron-beam lithography. The structure consists of two gates in series on the nanowire and the only difference with the SOI nanowire process lies in long (40nm) nitride spacers. As a result a single, silicide island gets isolated between the gates and transport is dominated by Coulomb blockade at cryogenic temperatures thanks to the small size and therefore capacitance of this island. Operation and performances comparable to devices fabricated using e-beam lithography is…

research product

Dopant-controlled single-electron pumping through a metallic island

We investigate a hybrid metallic island/single dopant electron pump based on fully depleted silicon-on-insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used to control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations.

research product

Dataset for Wenz et al. Phys. Rev. B 99, 201409(R) (2019), "Quantum dot state initialization by control of tunneling rates"

Collection of the datasets used to generate the figures in the following journal paper: "Quantum dot state initialization by control of tunneling rates" Tobias Wenz, Jevgeny Klochan, Frank Hohls, Thomas Gerster, Vyacheslavs Kashcheyevs, and Hans W. Schumacher PHYSICAL REVIEW B 99, 201409(R) (2019) DOI: 10.1103/PhysRevB.99.201409

research product