0000000000144347

AUTHOR

Jevgeny Klochan

showing 5 related works from this author

Quantum dot state initialization by control of tunneling rates

2019

We study the loading of electrons into a quantum dot with dynamically controlled tunnel barriers. We introduce a method to measure tunneling rates for individual discrete states and to identify their relaxation paths. Exponential selectivity of the tunnel coupling enables loading into specific quantum dot states by tuning independently energy and rates. While for the single-electron case orbital relaxation leads to fast transition into the ground state, for electron pairs triplet-to-singlet relaxation is suppressed by long spin-flip times. This enables the fast gate-controlled initialization of either a singlet or a triplet electron pair state in a quantum dot with broad potential applicati…

PhysicsElectron pairCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciences02 engineering and technologyElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsQuantum technologyQuantum dotMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesRelaxation (physics)Singlet state010306 general physics0210 nano-technologyGround stateQuantum tunnellingPhysical Review B
researchProduct

Gigahertz Single-Electron Pumping Mediated by Parasitic States

2018

In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achi…

Electron capturePhysics::OpticsFOS: Physical sciencesBioengineering02 engineering and technologyElectron7. Clean energy01 natural sciencesQuantization (physics)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quantum metrologyGeneral Materials Science010306 general physicsQuantumQCPhysicsta214Condensed Matter - Mesoscale and Nanoscale Physicsta114business.industryMechanical EngineeringQuantum dotsiliconGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsSemiconductorQuantum dotquantum electrical metrologysingle-electron pumpOptoelectronicsElectric current0210 nano-technologybusinessNANO LETTERS
researchProduct

Design and operation of CMOS-compatible electron pumps fabricated with optical lithography

2017

We report CMOS-compatible quantized current sources (electron pumps) fabricated with nanowires (NWs) on 300mm SOI wafers. Unlike other Al, GaAs or Si based metallic or semiconductor pumps, the fabrication does not rely on electron-beam lithography. The structure consists of two gates in series on the nanowire and the only difference with the SOI nanowire process lies in long (40nm) nitride spacers. As a result a single, silicide island gets isolated between the gates and transport is dominated by Coulomb blockade at cryogenic temperatures thanks to the small size and therefore capacitance of this island. Operation and performances comparable to devices fabricated using e-beam lithography is…

Materials science[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsNanowireSilicon on insulatorPhysics::OpticsFOS: Physical sciences02 engineering and technology7. Clean energy01 natural sciencesCapacitancelaw.inventionOptical pumpingCondensed Matter::Materials Sciencelaw0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Electrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsLithographyComputingMilieux_MISCELLANEOUSCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryCoulomb blockade021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic MaterialsComputer Science::OtherCMOSOptoelectronicsPhotolithography0210 nano-technologybusiness[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat]
researchProduct

Dopant-controlled single-electron pumping through a metallic island

2016

We investigate a hybrid metallic island/single dopant electron pump based on fully depleted silicon-on-insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used to control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations.

Materials sciencePhysics and Astronomy (miscellaneous)FOS: Physical sciencesSilicon on insulator02 engineering and technologyElectron01 natural sciences[PHYS] Physics [physics]MetalElectron transferMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsComputingMilieux_MISCELLANEOUS[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Quantum tunnelling[PHYS]Physics [physics]Condensed Matter - Mesoscale and Nanoscale PhysicsDopantbusiness.industryResonance021001 nanoscience & nanotechnology[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]visual_artvisual_art.visual_art_mediumOptoelectronicsRadio frequency0210 nano-technologybusiness[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat]Applied Physics Letters
researchProduct

Dataset for Wenz et al. Phys. Rev. B 99, 201409(R) (2019), "Quantum dot state initialization by control of tunneling rates"

2019

Collection of the datasets used to generate the figures in the following journal paper: "Quantum dot state initialization by control of tunneling rates" Tobias Wenz, Jevgeny Klochan, Frank Hohls, Thomas Gerster, Vyacheslavs Kashcheyevs, and Hans W. Schumacher PHYSICAL REVIEW B 99, 201409(R) (2019) DOI: 10.1103/PhysRevB.99.201409

researchProduct