0000000000165766
AUTHOR
R. Saldanha
Results from a calibration of XENON100 using a source of dissolved radon-220
A Rn 220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb 212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn 222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn 222 . Using the delayed coincidence of R…
Online 222 Rn removal by cryogenic distillation in the XENON100 experiment
We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant 222 Rn background originating from radon emanation. After inserting an auxiliary 222 Rn emanation source in the gas loop, we determined a radon reduction factor of R>27 (95% C.L.) for the distillation column by monitoring the 222 Rn activity concentration inside the XENON100 detector.
Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy
Borexino has been running since May 2007 at the Laboratori Nazionali del Gran Sasso laboratory in Italy with the primary goal of detecting solar neutrinos. The detector, a large, unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity, is optimized for the study of the lower energy part of the spectrum. During Phase-I (2007–2010), Borexino first detected and then precisely measured the flux of the Be 7 solar neutrinos, ruled out any significant day-night asymmetry of their interaction rate, made the first direct observation of the pep neutrinos, and set the tightest upper limit on the flux of solar neutrinos produced in the CNO cycle …
First real–time detection of solar pp neutrinos by Borexino
International audience; Solar neutrinos have been pivotal to the discovery of neutrino flavour oscillations and are a unique tool to probe the reactions that keep the Sun shine. Although most of solar neutrino components have been directly measured, the neutrinos emitted by the keystone pp reaction, in which two protons fuse to make a deuteron, have so far eluded direct detection. The Borexino experiment, an ultra-pure liquid scintillator detector running at the Laboratori Nazionali del Gran Sasso in Italy, has now filled the gap, providing the first direct real time measurement of pp neutrinos and of the solar neutrino luminosity.
Neutrinos from the primary proton–proton fusion process in the Sun
International audience; In the core of the Sun, energy is released through sequences of nuclear reactions that convert hydrogen into helium. The primary reaction is thought to be the fusion of two protons with the emission of a low-energy neutrino. These so-called pp neutrinos constitute nearly the entirety of the solar neutrino flux, vastly outnumbering those emitted in the reactions that follow. Although solar neutrinos from secondary processes have been observed, proving the nuclear origin of the Sun's energy and contributing to the discovery of neutrino oscillations, those from proton-proton fusion have hitherto eluded direct detection. Here we report spectral observations of pp neutrin…
Online $$^{222}$$ 222 Rn removal by cryogenic distillation in the XENON100 experiment
Recent results from Borexino and the first real time measure of solar pp neutrinos
International audience; The Borexino detector was built starting from 1996 in the underground hall C of Gran Sasso National Laboratory (LNGS) in Italy under about 1400 m of rock (3800 m.w.e) and it is mostly aimed to the study in real-time of the low-energy solar neutrinos.Since the beginning of data taking, in May 2007, the unprecedented detector radio-purity made the performances of the detector unique: a milestone has been very recently achieved with the measurement of solar pp neutrino flux, providing the first direct observation in real time of the key fusion reaction powering the Sun.In this contribution the most important Borexino achievements to the fields of solar, geo-neutrino and…
Removing krypton from xenon by cryogenic distillation to the ppq level
The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter 85 Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon natKr/Xe<200ppq (parts per quadrillion, 1 ppq =10−15mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe–Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4⋅10⁵ with thermodynamic stabili…
Material radioassay and selection for the XENON1T dark matter experiment
The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the…
Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun
The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as we…
The XENON1T Dark Matter Experiment
The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. © 2017, The Author(s).
Removing krypton from xenon by cryogenic distillation to the ppq level
The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter 85Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon natKr/Xe<200ppq (parts per quadrillion, 1ppq=10-15mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe–Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 · 10 5 with thermodynamic stability a…
Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment
International audience; We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant$^{222}$ Rn background originating from radon emanation. After inserting an auxiliary$^{222}$ Rn emanation source in the gas loop, we determined a radon reduction factor of $R\,>\,27$ (95% C.L.) for the distillation column by monitoring the$^{222}$ Rn activity concentration inside the XENON100 detector.
Absence of a day-night asymmetry in the7Be solar neutrino rate in Borexino
We report on a search for the day-night asymmetry of the Be-7 solar neutrino rate measured by Borexino at the Laboratori Nazionali del Gran Sasso (LNGS), Italy. The measured value, Adn=0.001 +- 0.012 (stat) +- 0.007 (syst), shows the absence of a significant asymmetry. This result alone rejects the so-called LOW solution at more than 8.5 sigma. Combined with the other solar neutrino data, it isolates the Large Mixing Angle (LMA) -- MSW solution at DeltaChi2 > 190 without relying on the assumption of CPT symmetry in the neutrino sector. We also show that including the day-night asymmetry, data from Borexino alone restricts the MSW neutrino oscillations to the LMA solution at 90% confidence l…
SOX : short distance neutrino oscillations with Borexino
Abstract The Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of ν e (Cr) and ν e ‾ (Ce). Interacting in the a…
First Dark Matter Search Results from the XENON1T Experiment
We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consisten…