Systemic Candidiasis and TLR2 Agonist Exposure Impact the Antifungal Response of Hematopoietic Stem and Progenitor Cells.
We have previously demonstrated that Candida albicans induces differentiation of hematopoietic stem and progenitor cells (HSPCs) toward the myeloid lineage both in vitro and in vivo in a TLR2- and Dectin-1-dependent manner, giving rise to functional macrophages. In this work, we used an ex vivo model to investigate the functional consequences for macrophages derived from HSPCs in vivo-exposed to Pam3CSK4 (a TLR2 agonist) or C. albicans infection. Short in vivo treatment of mice with Pam3CSK4 results in a tolerized phenotype of ex vivo HSPC-derived macrophages, whereas an extended Pam3CSK4 treatment confers a trained phenotype. Early during candidiasis, HSPCs give rise to macrophages trained…
Characterization of a new murine retinal cell line (MU-PH1) with glial, progenitor and photoreceptor characteristics
Unlike fish and amphibians, mammals do not regenerate retinal neurons throughout life. However, neurogenic potential may be conserved in adult mammal retina and it is necessary to identify the factors that regulate retinal progenitor cells (RPC) proliferative capacity to scope their therapeutic potential. Müller cells can be progenitors for retinal neuronal cells and can play an essential role in the restoration of visual function after retinal injury. Some members of the Toll-like receptor (TLR) family, TLR2, TLR3 and TLR4, are related to progenitor cells proliferation. Müller cells are important in retinal regeneration and stable cell lines are useful for the study of retinal stem cell bi…
TLRs control hematopoiesis during infection
Recent research has shown that (i) Toll-like receptor (TLR) agonists drive hematopoietic stem and progenitor cells (HSPCs) to proliferate and differentiate along the myeloid lineage in vitro, and (ii) direct TLR-mediated stimulation of HSPCs also promotes macrophage differentiation in vivo following infection. These new insights demonstrate that TLR signaling in HSPCs, in addition to other TLR-dependent mechanisms, can contribute to HSPC expansion and myeloid differentiation after infection. Evidence is, therefore, mounting that direct TLR-induced programming of hematopoiesis plays a key role in host defense by rapidly replenishing the innate immune system with the cells needed to deal with…
PRR signaling during in vitro macrophage differentiation from progenitors modulates their subsequent response to inflammatory stimuli.
Toll-like receptor (TLR) agonists drive hematopoietic stem and progenitor cells (HSPCs) to differentiate along the myeloid lineage in vitro and also in vivo following infection. In this study, we used an in vitro model of HSPC differentiation to investigate the functional consequences (cytokine production) that exposing HSPCs to various pathogen-associated molecular patterns (PAMPs) and Candida albicans cells have on the subsequently derived macrophages. Mouse HSPCs (Lin- cells) were cultured with GM-CSF to induce macrophage differentiation in the presence or absence of the following pattern recognition receptor (PRR) agonists: Pam3CSK4 (TLR2 ligand), LPS (TLR4 ligand), depleted zymosan (wh…
Direct Toll-Like Receptor-Mediated Stimulation of Hematopoietic Stem and Progenitor Cells Occurs In Vivo and Promotes Differentiation Toward Macrophages
Abstract As Toll-like receptors (TLRs) are expressed by hematopoietic stem and progenitor cells (HSPCs), they may play a role in hematopoiesis in response to pathogens during infection. We show here that TLR2, TLR4, and TLR9 agonists (tripalmitoyl-S-glyceryl-L-Cys-Ser-(Lys)4 [Pam3CSK4], lipopolysaccharide [LPS], and CpG oligodeoxynucleotide [ODN]) induce the in vitro differentiation of purified murine lineage negative cells (Lin−) as well as HSPCs (identified as Lin− c-Kit+ Sca-1+ IL-7Rα− [LKS] cells) toward macrophages (Mph), through a myeloid differentiation factor 88 (MyD88)-dependent pathway. In order to investigate the possible direct interaction of soluble microorganism-associated mol…
Influence of aging on murine neutrophil and macrophage function against Candida albicans.
Previous work by our group showed that aged C57BL/6 mice develop an altered innate and adaptive immune response to Candida albicans and are more susceptible to systemic primary candidiasis. In this work, we used young (2-3 months old) and aged (18-20 months old) C57BL/6 mice to study in vitro the influence of aging on (1) the fungicidal activity of neutrophils and macrophages, (2) the production of cytokines by resident peritoneal macrophages in response to C. albicans, and (3) cell surface Toll-like receptor (TLR) 2 expression on resident peritoneal macrophages. Our results indicate that murine phagocytes have a fungicidal activity well preserved with aging. In vitro production of proinfla…
MyD88 is dispensable for resistance toParacoccidioides brasiliensisin a murine model of blood-borne disseminated infection
We have studied the role of MyD88, an adaptor protein of Toll-like receptors (TLRs), in murine defenses against Paracoccidioides brasiliensis in a model of blood-borne disseminated infection. Wild-type (WT) and MyD88-deficient mice infected intravenously with P. brasiliensis yeast cells showed an equivalent fungal burden, as well as similar levels of proinflammatory IL-1beta, IL-6, IL-12p70, tumor necrosis factor (TNF)-alpha and MIP-2, T-helper type 1 (Th1) (IFN-gamma) and Th2 cytokines (IL-4) in tissue homogenates. In vitro production of TNF-alpha, IFN-gamma and IL-12p70, by antigen-stimulated splenocytes from infected animals, was also similar in both types of mice; this production of Th1…
TLR2 and Dectin-1 Signaling in Mouse Hematopoietic Stem and Progenitor Cells Impacts the Ability of the Antigen Presenting Cells They Produce to Activate CD4 T Cells
Microbial recognition by pattern recognition receptors (PRRs) expressed on hematopoietic stem and progenitor cells (HSPCs) not only activates myelopoiesis but also programs the function of the monocytes and macrophages they produce. For instance, changes in HSPC programming modify the ability of macrophages derived from them to produce inflammatory cytokines. While HSPCs exposed to a TLR2 agonist give rise to tolerized macrophages (lower proinflammatory cytokine production), HSPCs treated with Dectin-1 ligands produce trained macrophages (higher proinflammatory cytokine production). However, nothing is known about the impact of HSPC exposure to microbes on the function of antigen presenting…
Impaired immune response to Candida albicans in aged mice
The prevalence of opportunistic fungal infections has increased dramatically among the aged population in recent years. This work investigated the effect of ageing on murine defences against Candida albicans. Aged C57BL/6 mice that were experimentally infected intravenously had a significantly impaired survival and a higher tissue fungal burden compared with young mice. In vitro production of tumour necrosis factor (TNF)-α by macrophages from aged mice in response to yeast cells and hyphae of C. albicans was significantly lower than production by macrophages from young mice. In vitro production of cytokines, such as TNF-α and gamma interferon (IFN-γ), by antigen-stimulated splenocytes from …
CANDIDA ALBICANS INDUCES SELECTIVE DEVELOPMENT OF MACROPHAGES AND MONOCYTE DERIVED DENDRITIC CELLS BY A TLR2 DEPENDENT SIGNALLING
As TLRs are expressed by haematopoietic stem and progenitor cells (HSPCs), these receptors may play a role in haematopoiesis in response to pathogens during infection. We have previously demonstrated that in in vitro defined conditions inactivated yeasts and hyphae of Candida albicans induce HSPCs proliferation and differentiation towards the myeloid lineage by a TLR2/MyD88 dependent pathway. In this work, we showed that C. albicans invasive infection with a low virulence strain results in a rapid expansion of HSPCs (identified as LKS cells: Lin(-) c-Kit(+) Sca-1(+) IL-7R alpha(-)), that reach the maximum at day 3 post-infection. This in vivo expansion of LKS cells in TLR2(-/-) mice was del…
Dectin-1 Stimulation of Hematopoietic Stem and Progenitor Cells Occurs In Vivo and Promotes Differentiation Toward Trained Macrophages via an Indirect Cell-Autonomous Mechanism
Invasive candidiasis is an increasingly frequent cause of serious and often fatal infections. Understanding host defense is essential to design novel therapeutic strategies to boost immune protection against Candida albicans. In this article, we delve into two new concepts that have arisen over the last years: (i) the delivery of myelopoiesis-inducing signals by microbial components directly sensed by hematopoietic stem and progenitor cells (HSPCs) and (ii) the concept of “trained innate immunity” that may also apply to HSPCs. We demonstrate that dectin-1 ligation in vivo activates HSPCs and induces their differentiation to trained macrophages by a cell-autonomous indirect mechanism. This p…
Enhanced proinflammatory response to the Candida albicans gpi7 null mutant by murine cells.
International audience; The Candida albicans gpi7/gpi7 null mutant strain (Deltagpi7), which is affected in glycosylphosphatidylinositol (GPI) anchor biosynthesis, showed a reduced virulence following systemic infection of C57BL/6 mice. In vitro production of TNF-alpha, IL-6 and IL-1beta by macrophages in response to Deltagpi7 cells was significantly increased as compared to control (wild type GPI7/GPI7 and revertant gpi7/GPI7) cells; this probably contributes to the enhanced recruitment of neutrophils to the peritoneal cavity in response to Deltagpi7 cells. Survival of knockout mice for Toll-like receptor (TLR) 2 and TLR4 following intravenous injection of Deltagpi7 cells showed no signifi…
Detection of a TLR2 agonist by hematopoietic stem and progenitor cells impacts the function of the macrophages they produce
Several groups have shown that detection of microbial components by TLRs on hematopoietic stem and progenitor cells (HSPCs) instructs myeloid cell generation, raising interest in the possibility of targeting TLRs on HSPCs to boost myelopoiesis. However, although "TLR-derived" cells exhibit myeloid cell characteristics (phagocytosis, cytokine production, antigen presentation), it is not clear whether they are functionally equivalent to macrophages derived in the absence of TLR activation. Our in vitro and in vivo studies show that macrophages derived from mouse and human HSPC subsets (including stem cells) exposed to a TLR2 agonist prior to or during macrophage differentiation produce lower …
In vitroresponse toCandida albicansin cultures of whole human blood from young and aged donors
Invasive infections with opportunistic fungi, such as Candida albicans, have become an increasing problem in aged adults in recent years. This work investigates the influence of human ageing on C. albicans recognition by toll-like receptors (TLRs), essential components of the innate immune system, using a cohort of 96 young (15-42 years) and aged (70 years) human volunteers. No significant differences between aged and young donors were observed on (1) cell surface TLR2, TLR6 and TLR4 expression on lymphocytes, monocytes and granulocytes, (2) production of cytokines [IL-8, IL-1beta, IL-6, IL-10, tumour necrosis factor (TNF)-alpha and IL-12p70] and prostaglandin E(2) (PGE(2)) by whole human b…
Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling.
As TLRs are expressed by hematopoietic stem and progenitor cells, these receptors may play a role in hematopoiesis in response to pathogens during infection. We showed here that inactivated yeasts and hyphae of Candida albicans induce in vitro the proliferation of purified murine hematopoietic stem and progenitor cells (Lin(-)c-Kit(+) Sca-1(+)) as well as their differentiation to lineage positive cells, through a MyD88-dependent pathway. These results indicate that TLR-mediated recognition of C. albicans by hematopoietic stem and progenitor cells may augment the host capability for rapidly replenishing the innate immune system during candidiasis.
3054 – MONOCYTE SUBSET PRODUCTION DURING AGING
A growing body of evidence suggests that monocytes are more heterogenous than previously appreciated and that monocyte subsets play distinct roles in both health and disease. We have previously demonstrated that two separate pathways of monocyte production by granulocyte-monocyte progenitors (GMPs) and monocyte-dendritic cell progenitors (MDPs) yield functionally distinct monocyte subsets in mouse bone marrow. GMPs produce classical monocytes with neutrophil-like properties, and MDPs yield classical monocytes that give rise to monocyte-derived DCs (moDCs). We also showed that Toll-like receptor agonists differentially promote production of these monocyte subsets during emergency monopoiesis…
GM-CSF Programs Hematopoietic Stem and Progenitor Cells During Candida albicans Vaccination for Protection Against Reinfection
More mechanistic studies are needed to reveal the hidden details of in vivo-induced trained immunity. Here, using a Candida albicans live vaccine mouse model we show that vaccination protects mice against a secondary infection and increases the number of bone marrow, and especially, splenic trained monocytes. Moreover, vaccination expands and reprograms hematopoietic stem and progenitor cells (HSPCs) early during infection and mobilize them transiently to the spleen to produce trained macrophages. Trained HSPCs are not only primed for myeloid cell production but also reprogramed to produce a greater amount of proinflammatory cytokines in response to a second challenge. Additionally, their a…
TLR2, TLR4 and Dectin-1 signalling in hematopoietic stem and progenitor cells determines the antifungal phenotype of the macrophages they produce
TLRs represent an attractive target for the stimulation of myeloid cell production by HSPCs. We have previously demonstrated that HSPCs use TLR2 to sense Candida albicans in vivo and induce the production of macrophages. In this work, we used an in vitro model of HSPCs differentiation to investigate the functional consequences for macrophages of exposure of HSPCs to various PAMPs and C. albicans cells. Mouse HSPCs (Lin(-) cells) were cultured with M-CSF to induce macrophage differentiation, in the presence or absence of the following PRR agonists: Pam3CSK4 (TLR2 ligand), LPS (TLR4 ligand), depleted zymosan (which only activates Dectin-1), or C. albicans yeasts (which activate several PRRs, …
The Ontogeny of Monocyte Subsets
Classical and non-classical monocytes, and the macrophages and monocyte-derived dendritic cells they produce, play key roles in host defense against pathogens, immune regulation, tissue repair and many other processes throughout the body. Recent studies have revealed previously unappreciated heterogeneity among monocytes that may explain this functional diversity, but our understanding of mechanisms controlling the functional programming of distinct monocyte subsets remains incomplete. Resolving monocyte heterogeneity and understanding how their functional identity is determined holds great promise for therapeutic immune modulation. In this review, we examine how monocyte origins and develo…
Signalling through TLR2/MyD88 induces differentiation of murine bone marrow stem and progenitor cells to functional phagocytes in response to Candida albicans.
Summary We have previously demonstrated that inactivated yeasts and hyphae of Candida albicans induce in vitro the proliferation of murine haematopoietic stem and progenitor cells (HSPCs, sorted as LKS cells: Lin - c-Kit + Sca-1 + ) as well as their differentia- tion to lineage-positive cells, through a MyD88- dependent pathway. In this work, we have found that this process is mainly mediated by TLR2, and that expanding cells express myeloid and not lym- phoid markers. Incubation of long-term repopulat- ing HSCs (Lin - CD105 + and Sca-1 + ) with C. albicans yeasts resulted in their proliferation and up regu- lation of the common myeloid progenitors (CMPs) markers, CD34 and FcgRII/III, by a …
Dectin-1 mediatesin vitrophagocytosis ofCandida albicansyeast cells by retinal microglia: Figure 1
We have investigated the expression of TLR2 and Dectin-1 in retinal microglia and their involvement in Candida albicans phagocytosis using a cytometric approach. The expression of both receptors has been demonstrated in CD11b+ retinal cells. Phagocytosis of pHrodo-labelled C. albicans yeasts by microglial CD11b+ cells of C57BL/6 mice was inhibited both by the Dectin-1 antagonist laminarin and anti-Dectin-1 antibodies, whereas phagocytosis of yeasts by retinal microglia of TLR2 KO mice was unaffected. These data indicate that phagocytosis of C. albicans yeasts by retinal microglia is mediated by Dectin-1, whereas TLR2 does not play a significant role in this process.
Role of Toll-like receptors in systemic Candida albicans infections.
Toll-like receptors (TLRs) constitute a family of pattern-recognition receptors (PRRs) that recognize molecular signatures of microbial pathogens and function as sensors for infection that induce the activation of the innate immune responses as well as the subsequent development of adaptive immune responses. It is well established that TLRs, mainly TLR2 and TLR4, are involved in the host interaction with Candida albicans and play a significant role in the development of host immune responses during candidiasis. Recognition of C. albicans by TLRs on the phagocytic cells activates intracellular signaling pathways that trigger production of proinflammatory cytokines that are critical for innat…