0000000000191334

AUTHOR

Giuseppe Cammarata

0000-0002-3527-2271

miR-155 regulative network in FLT3 mutated acute myeloid leukemia

Abstract Background Acute myeloid leukemia (AML) represents a heterogeneous disorder with recurrent chromosomal alterations and molecular abnormalities. Among AML with normal karyotype (NK-AML) FLT3 activating mutation, internal tandem duplication (FLT3-ITD), is present in about 30% of patients, conferring unfavorable outcome. Our previous data demonstrated specific up-regulation of miR-155 in FLT3-ITD+ AML. miR-155 is known to be directly implicated in normal hematopoiesis and in some pathologies such as myeloid hyperplasia and acute lymphoblastic leukemia. Methods and results To investigate about the potential influence of miR-155 de-regulation in FLT3-mutated AML we generated a transcrip…

research product

Modulation of Nitric Oxide Production by Tetracyclines and Chemically Modified Tetracyclines

Chemically modified tetracyclines (CMTs) dose-dependently decreased inducible nitric oxide synthase (iNOS) and, consequently, nitric oxide (NO) formation by the lipopolysaccharide (LPS)-stimulated J774 line. The inhibitory effect was due to a specific reduction in the iNOS protein content in the cells, as attested by Western blot analysis and by the inhibition of iNOS mRNA accumulation. Furthermore, CMTs cause a dose-dependent increase in cell death in the J774 line mediated by the NO-independent apoptotic mechanism.

research product

The Phenotypic Characterization of the Cammalleri Sisters, an Example of Exceptional Longevity

This article shows demographic, clinical, anamnestic, cognitive, and functional data as well as biochemical, genetic, and epigenetic parameters of two exceptional siblings: Diega (supercentenarian) and Filippa (semisupercentenarian) Cammalleri. The purpose of this study is to provide new insights into the extreme phenotypes represented by semisupercentenarians and supercentenarians. Different studies have been published on supercentenarians, but to the best of our knowledge, this is the only concerning two sisters and the most detailed from a phenotypic point of view. Our findings agree with the suggestion that supercentenarians have an increasing relative resistance to age-related diseases…

research product

Differential expression of specific microRNA and their targets in acute myeloid leukemia

Acute myeloid leukemia (AML) the most common acute leukemia in adults is characterized by various cytogenetic and molecular abnormalities. However, the genetic etiology of the disease is not yet fully understood. MicroRNAs (miRNA) are small noncoding RNAs which regulate the expression of target mRNAs both at transcriptional and translational level. In recent years, miRNAs have been identified as a novel mechanism in gene regulation, which show variable expression during myeloid differentiation. We studied miRNA expression of leukemic blasts of 29 cases of newly diagnosed and genetically defined AML using quantitative reverse transcription polymerase chain reaction (RT-PCR) for 365 human miR…

research product

The gene encoding the transcriptional repressor BERF-1 maps to a region of conserved synteny on mouse chromosome 16 and human chromosome 3 and a related pseudogene maps to mouse chromosome 8.

We have recently identified and characterized a Kruppel-like zinc finger protein (BERF-1), that functions as a repressor of β enolase gene transcription. By interspecific backcross analysis the gene encoding BERF-1 was localized 4.7 cM proximal to the <i>Mtv6</i> locus on mouse chromosome 16, and an isolated pseudogene was localized to mouse chromosome 8, about 5.3 cM distal to the D8Mit4 marker. Nucleotide sequence identity and chomosome location indicate that the gene encoding BERF-1 is the mouse homologue (<i>Zfp148</i>) of ZNF148 localized to human chromosome 3q21, a common translocation site in acute myeloid leukemia patients.

research product

Can Be miR-126-3p a Biomarker of Premature Aging? An Ex Vivo and In Vitro Study in Fabry Disease

Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by lysosomal accumulation of glycosphingolipids in a wide variety of cytotypes, including endothelial cells (ECs). FD patients experience a significantly reduced life expectancy compared to the general population

research product

Tetracycline inhibits the nitric oxide synthase activity induced by endotoxin in cultured murine macrophages

Here we investigate the effects of tetracycline base and of a semi-synthetic tetracycline derivative, doxycycline, on the induction of inducible nitric oxide synthase and, hence, on the production of nitric oxide (NO) by lipopolysaccharide in J774 macrophage cultured in vitro. The treatment of J774 line with tetracycline base (6.25-250 microM) or doxycycline (5-50 microM) dose-dependently decreased the lipopolysaccharide-stimulated (1 microg/ml) inducible NO synthase activity and, consequently, nitrite formation. For instance, the inhibition was 70% for tetracycline base at 250 microM and 68% for doxycycline at 50 microM. The inhibitory effect of tetracyclines was due neither to a reduction…

research product

A pilot study of circulating microRNAs as potential biomarkers of Fabry disease

Patients suffering from Fabry disease (FD), a lysosomal storage disorder, show a broad range of symptoms and the diagnosis followed by the therapeutic decision remains a great challenge. The biomarkers available today have not proven to be useful for predicting the evolution of the disease and for assessing response to therapy in many patients. Here, we used high-throughput microRNA profiling methodology to identify a specific circulating microRNA profile in FD patients. We discovered a pattern of 10 microRNAs able to identify FD patients when compared to healthy controls. Notably, two of these: the miR199a-5p and the miR-126-3p are able to discriminate FDs from the control subjects with le…

research product

Pro-inflammatory status is not a limit for longevity: case report of a Sicilian centenarian

Most studies on centenarians represent them as the best model of ageing. They are defined “delayers”, if they exhibit age-related diseases between 80 and 99 years, “survivors” if they show clinically demonstrable diseases before the age of 80 years, and “escapers” when they attain their 100th year of life without any common age-associated pathologies.

research product

High Variability of Fabry Disease Manifestations in an Extended Italian Family

Fabry disease (FD) is an inherited metabolic disorder caused by partial or full inactivation of the lysosomal hydrolaseα-galactosidase A (α-GAL). The impairment ofα-GAL results in the accumulation of undegraded glycosphingolipids in lysosomes and subsequent cell and microvascular dysfunctions. This study reports the clinical, biochemical, and molecular characterization of 15 members of the same family. Eight members showed the exonic mutation M51I in the GLA gene, a disease-causing mutation associated with the atypical phenotype. The clinical history of this family highlights a wide phenotypic variability, in terms of involved organs and severity. The phenotypic variability of two male pati…

research product

miR-126-3p and miR-21-5p as Hallmarks of Bio-Positive Ageing; Correlation Analysis and Machine Learning Prediction in Young to Ultra-Centenarian Sicilian Population

Human ageing can be characterized by a profile of circulating microRNAs (miRNAs), which are potentially predictors of biological age. They can be used as a biomarker of risk for age-related inflammatory outcomes, and senescent endothelial cells (ECs) have emerged as a possible source of circulating miRNAs. In this paper, a panel of four circulating miRNAs including miR-146a-5p, miR-126-3p, miR-21-5p, and miR-181a-5p, involved in several pathways related to inflammation, and ECs senescence that seem to be characteristic of the healthy ageing phenotype. The circulating levels of these miRNAs were determined in 78 healthy subjects aged between 22 to 111 years. Contextually, extracellular miR-1…

research product

Circulating miRNAs in Successful and Unsuccessful Aging. A Mini-review

Aging is a multifactorial process that affects the organisms at genetic, molecular and cellular levels. This process modifies several tissues with a negative impact on cells physiology, tissues and organs functionality, altering their regeneration capacity. The chronic low-grade inflammation typical of aging, defined as inflammaging, is a common biological factor responsible for the decline and beginning of the disease in age. A murine parabiosis model that combines the vascular system of old and young animals, suggests that soluble factors released by young individuals may improve the regenerative potential of old tissue. Therefore, circulating factors have a key role in the induction of …

research product

Gene Expression Profile of Chronic Myeloid Leukemia Innately Resistant to Imatinib

Background. Most chronic myeloid leukemia patients who receive imatinib as first line-terapy will obtain, after 12 months treatment, complete cytogenetic and molecular response . However several cases will not achieve molecular response, but their innate mechanism(s) of resistance remain poorly understood. We tried to explore the molecular events involved in innate resistance in CML. Study design. Five patients who were molecular “non responder” and seven “major” responder were investigated by using the expression profile of a set of 380 genes. Multiple testing procedure (MTP), Significance Analysis of Microarrays (SAM), Empirical Bayes Analysis of Microarrays (EBAM), False Discovery Rate (…

research product

Molecular and clinical studies in five index cases with novel mutations in the GLA gene

Fabry disease is a metabolic and lysosomal storage disorder caused by the functional defect of the α-galactosidase A enzyme; this defect is due to mutations in the GLA gene, that is composed of seven exons and is located on the long arm of the X-chromosome (Xq21–22). The enzymatic deficit is responsible for the accumulation of glycosphingolipids in lysosomes of different cellular types, mainly in those ones of vascular endothelium. It consequently causes a cellular and microvascular dysfunction. In this paper, we described five novel mutations in the GLA gene, related to absent enzymatic activity and typical manifestations of Fabry disease. We identified three mutations (c.846_847delTC, p.E…

research product

Conserved Structure and Promoter Sequence Similarity in the Mouse and Human Genes Encoding the Zinc Finger Factor BERF-1/BFCOL1/ZBP-89

Abstract We have characterized the genomic structure of the mouse Zfp148 gene encoding Beta-Enolase Repressor Factor-1 (BERF-1), a Kruppel-like zinc finger protein involved in the transcriptional regulation of several genes, which is also termed ZBP-89, BFCOL1. The cloned Zfp148 gene spans 110 kb of genomic DNA encompassing the 5′-end region, 9 exons, 8 introns, and the 3′-untranslated region. The promoter region displays the typical features of a housekeeping gene: a high G+C content and the absence of canonical TATA and CAAT boxes consistent with the multiple transcription initiation sites determined by primary extension analysis. Computer-assisted search in the human genome database allo…

research product

Extracellular Vesicles-ceRNAs as Ovarian Cancer Biomarkers: Looking into circRNA-miRNA-mRNA Code

Simple Summary Patients with ovarian cancer have a very poor chance of long-term survival, usually due to advanced disease at the time of diagnosis. Emerging evidence suggests that extracellular vesicles contain noncoding RNAs such as microRNAs, piwiRNAs, circular RNAs, and long noncoding RNAs, with regulatory effects on ovarian cancer. In this review, we focus on ovarian cancer-associated circular RNA shuttled by extracellular vesicles as mediators of cancer progression and novel biomarkers in liquid biopsy. We propose a circular-RNA-microRNA-mRNA code that can reveal the regulatory network created by extracellular vesicles, noncoding RNAs, and mRNAs in ovarian cancer. Future research in t…

research product

Mutations in the GLA Gene and LysoGb3: Is It Really Anderson-Fabry Disease?

Anderson-Fabry disease (FD) is a rare, progressive, multisystem storage disorder caused by the partial or total deficit of the lysosomal enzyme &alpha

research product

Fabry Disease, a Complex Pathology Not Easy to Diagnose

Fabry disease is a multisystemic lysosomal storage disorder, inherited in an X-linked manner. It is a defect of metabolism of the glycosphingolipids, due to the reduction or absence of the activity of lysosomal enzyme α-galactosidase A. This reduction of activity causes the storage of globotriaosylceramide and derivatives in the lysosomes, triggering a cascade of cellular events, mainly in vascular endothelium. These events are the responsible for the systemic clinical manifestations and the renal, cardiac and cerebrovascular complications, or a combination of them. The symptomatology can lead to the premature death of patient between the fourth or fifth decade of life. The first symptoms c…

research product

Fabry disease and multiple sclerosis misdiagnosis: the role of family history and neurological signs

Fabry disease (FD) is an X-linked inherited lysosomal storage disorder caused by a galactosidase A (a-gal A) deficiency. Central nervous system involvement and chronic white matter lesions are observed in both FD and multiple sclerosis (MS), which can confound the differential diagnosis. We analyzed the GLA gene, which encodes a-gal A, in 86 patients with clinical and neuroradiological findings consistent with MS to determine whether they had FD. We identified four women initially diagnosed with MS who had GLA mutations associated with FD. Our results indicate that family history besides neurological findings should be evaluated in patients with an uncertain diagnosis of MS. Also the involv…

research product