0000000000212518
AUTHOR
Valeria Boscaino
Improving the efficiency of a standard compliant wireless battery charger
In this paper, a wireless charger for portable electronics devices is presented. A power transmitter, also known as the magnetic pad, and a power receiver are magnetically coupled. A receiver architecture which improves the power conversion efficiency is proposed. All advantages brought by the proposed architecture are discussed and standard constraints are presented as well. The receiver is fully standard-compliant. A wireless station for mobile application is designed and tested. Simulation and experimental results are compared. As shown by experimental results, thanks to the proposed architecture the power conversion efficiency of the receiver section is really close to a unit value. Pow…
Power tracking with maximum efficiency for wireless charging of E-bikes
Wireless charging techniques, based on Inductive Power Transfer (IPT), are attractive for Electric Vehicles (EV), due to benefits such as convenience and safety. An accurate valuation of the maximum achievable efficiency in an IPT system is extremely unlikely due to the high sensitivity to parasitic elements variations. Therefore, an “on site” procedure of power efficiency characterization is useful to get a precise description of the efficiency curve and obtain the actual maximum efficiency. In this paper, a power tracking algorithm aiming at efficiency maximization is proposed for a Wireless Charging system. The algorithm aims at finding the maximum power transfer efficiency with respect …
A Novel Linear-Non-Linear Digital Control for DC/DC Converter with Fast Transient Response
In this paper, a digitally controlled multimodule DC-DC converter with fast transient response, based on a linear-nonlinear control is presented. The proposed digital control improves the stability of the system, cuts off the effects of limit-cycle and reduces the recovery time, by making the "effective" bandwidth of the system independent of the bandwidth of the linear control loop and limits, at the same time, output voltage variations. The digital control is AVP-compatible and halves the recovery time. Preliminary hardware tests on a single phase step-down converter are reported. The experimental results match simulation ones, obtained by modelling system with Matlab/Aldec mixed environm…
DC link voltage swinging and load current unbalance in fault tolerant VSI. overview and compensation strategies
The topic of this paper is the discussion on the performance of a three-phase fault tolerant inverter with particular attention to the underrated aspect of current unbalances occurring due to the DC link voltage fluctuates after the inverter reconfiguration. Capacitor voltage unbalance affects not only the average output voltage of the inverter, but also its performance. In fact, the inverter performance depends on the fluctuating DC-link voltage components rather than on the average DC-link voltage. After a brief analysis of the voltage fluctuation phenomena resulting from fault tolerant configuration and their effect on load current unbalance, the Authors consider different compensating p…
An inertial system for the production of electricity and hydrogen from sea wave energy
This paper aims at describing a small scale prototype of a complete wave energy converter system for hydrogen production promoting the opportunity of installation in Sicily, in the Mediterranean Sea. The opportunity to produce hydrogen from sea-water identifies ocean wave energy as the most promising solution for electricity generation including hydrogen production and storage. Even if hydrogen is considered one of the most promising secondary sources, criticism arises from both the academic and the industrial world mainly because hydrogen production requires electricity consumption. Furthermore, safety problems concerning hydrogen storage and transport are actually the main hindrance to fu…
A novel digital control for DC/DC converters to improve steady-state performances
This paper describes an innovative digital PWM control implementation for low voltage, high current DC-DC converters. The proposed technique, based on the use of a low resolution DAC, improves steady-state performances, minimizing limit cycle effects. The novel technique is tested on a FPGA-based single phase buck converter operating at 250 kHz. A detailed description of the proposed architecture is given and test results, simulation and experimental ones, are shown
Performance evaluation of a multisource renewable power converter prototype
An innovative PWM loop control for VRMs
MATLAB-based simulator of a 5 kW fuel cell for power electronics design
Abstract In the last few years, renewable energies have been encouraged by worldwide governments to meet energy saving policies. Among renewable energy sources, fuel cells have attracted much interest for a wide variety of research areas. Since combined heat-power generation is allowed, household appliances are still the most promising applications. Fuel cell-based residential-scaled power supply systems take advantage by simultaneous generation of power and heat, reducing the overall fossil fuel consumption and utilities cost. Modelling is one of the most important topic concerning fuel cell use. In this paper, a measurement-based steady-state and dynamic fuel cell model is presented. The …
Fuel cells for household appliances: Experimental test of power management algorithms
In this paper, fuel cell - based hybrid power supplies for household appliances are addressed. The profile of residential power consumption is evaluated during working, non-working days in both summer and winter periods. The worst-case load power demand is therefore highlighted. A 5kW Nuvera PowerFlow proton exchange membrane fuel cell for household appliances is tested. On the basis of the characterization of the fuel cell stack under test, stand-alone and fuel cell - battery active hybrid power supply architectures are both considered. Experimental validation of three power management algorithms is proposed in terms of hydrogen consumption, cost and energy saving. Power management algorit…
Decoupled Control Scheme of Grid-Connected Split-Source Inverters
During the last few years, single-stage power conversion systems has undergone a fast evolution to replace the conventional two-stage architecture, which includes a front-end dc-dc boost converter (BC) and an output voltage source inverter (VSI) [1]. This evolution has grown up to improve the overall system performance in terms of reducing its size, weight, and complexity. Most of these single-stage topologies and their different modulation schemes have been reviewed in [1]. Among these different single-stage options, the split-source inverter (SSI), shown in Figure 1, has been recently proposed in [2] as a single-stage dc-ac power converter topology to overcome some demerits in the other s…
A simple and accurate model of photovoltaic modules for power system design
Achieving maximum power transfer in a multi-source renewable system
In this paper, a multi-source DC-DC power system is proposed for renewable applications. A multi-input, single inductor power converter controlled by two interacting control loops is designed. The steady-state and small-signal analysis of the designed system is carried out. A battery-photovoltaic system is designed as an application example. Both the output voltage and maximum power point of solar panels are properly controlled to achieve high performances of the whole system. Experimental results on a 48 V laboratory prototype are presented to discuss system performances.
A semi-empirical multipurpose steady-state model of a fuel cell for household appliances
In this paper, a multipurpose model of a proton exchange membrane fuel cell for household appliances is proposed. According to a conventional mathematical approach, the proposed model is derived from the physical and electro-chemical equations that rule the fuel cell behaviour. Differently from existing models, a parametric analysis is carried out and a few tunable parameters are accurately selected and identified. Furthermore, this paper proposes an innovative technique of unique model architecture which enables the designer to solve by himself the trade-off between complexity and accuracy on the basis of the specific applications. Three different choices could be performed by the designer…
A novel linear-non-linear digital control for DC/DC converters
In this paper, a digitally controlled multi-module DC-DC converter with fast transient response, based on a linear-non-linear control is presented. The proposed digital control improves the stability of the system, cuts off the effects of limit-cycle and reduces the recovery time, by making the "effective" bandwidth of the system independent of the bandwidth of the linear control loop and limits, at the same time, output voltage variations. The novel digital control is AVP-compatible and halves the recovery time. Preliminary hardware tests on a single phase step-down converter are reported. The experimental results match simulation ones, obtained by modelling system with Matlab/Aldec mixed …
Design of a solar-battery-thermoelectric power converter prototype
In this paper a multisource renewable energy system for high-current applications is proposed. The power architecture is based on a multi-input power converter including control and reconfiguration subsystems. Independently of the type of connected renewable sources, a proper control of the output DC voltage bus is provided as well as a proper control on the operating point of each renewable source to achieve the maximum power transfer. A 48V thermoelectric-photovoltaic-battery system in a three input configuration is designed. Three interacting feedback networks are implemented: the outer loop which controls the output voltage and as many inner loops as connected renewable sources to achie…
CZT-Based Harmonic Analysis in Smart Grid Using Low-Cost Electronic Measurement Boards
This paper validates the use of a harmonic analysis algorithm on a microcontroller to perform measurements of non-stationary signals in the context of smart grids. The increasing presence of electronic devices such as inverters of distributed generators (DG), power converters of charging stations for electric vehicles, etc. can drain non-stationary currents during their operation. A classical fast Fourier transform (FFT) algorithm may not have sufficient spectral resolution for the evaluation of harmonics and inter-harmonics. Thus, in this paper, the implementation of a chirp-Z transform (CZT) algorithm is suggested, which has a spectral resolution independent from the observation window. T…
The effect of manufacturing tolerances on a tubular linear ferrite motor
This study presents a numerical and experimental study on the effect of permanent magnet tolerances on the performances of a Tubular Linear Ferrite Motor. The statistical distribution of the magnetic characteristic of a set of commercial magnets is obtained experimentally while the performances of a the tubular motor are numerically evaluated. The performances that have been considered are: cogging force, end effect force and generated thrust. It has been shown that: 1)the statistical variability of the magnets modifies the time behavior of the cogging force; 2)the value of both the end effect cogging force and the generated thrust are directly linked to the values of then remanence field o…
Overview and performance comparison of grid synchronization algorithms
Distributed power generation units are experiencing an impressive growth. Consequently, the amount of energy injected by non-linear loads as power converters is expected to increase. Stability and quality of the overall grid are heavily affected by performances of grid-side converters. In this paper, an overview of grid-synchronization technique is proposed. The grid-side inverter is implemented in MATLAB/Simulink® environment including current control and grid-synchronization section. Both Synchronous Reference Frame (SRF) and Decoupled Double Synchronous Reference Frame (DDSRF) PLL algorithms are implemented. A performance comparison is carried out under ideal and unbalanced utility condi…
Non-linear digital control improving transient response: Design and test on a multiphase VRM
Multiphase interleaved buck converters are widely used for point of load applications, especially for VRMs. Performance optimization issue often clashes with size and cost requirements thus leading the industrial and academic research to focus on advanced solutions. This paper presents a control technique for multiphase VRMs including two interacting sections: the linear loop implements a PWM peak current mode control and the nonlinear subsystem modifies few linear loop parameters under load transients only. Steady-state performances are affected by the linear control only while dynamic performance optimization is a non-linear algorithm issue. The proposed control system improves the dynami…
Local DoS applications with micro wind generation systems
In this paper a wind electrical power generation system for Distributed on Site (DoS) applications is proposed. This system was developed and conceived in order to guarantee simple installation, use and service, obtaining a product that can be easily industrialized and put into the market with limited costs. The field of application of such an electrical generation system is addressed towards domestic or at the most toward condominium applications concerning moreover the opportunity of working in addition to combined photovoltaic and solar-thermal systems to enhance the renewable energy generation at house level (DoS). The proposed system has its hot spot in the blades shape, in the wind fl…
Dynamic performance evaluation of a non linear digital control technique for multiphase VRMs
Active load sharing technique for on-line efficiency optimization in DC microgrids
Recently, DC power distribution is gaining more and more importance over its AC counterpart achieving increased efficiency, greater flexibility, reduced volumes and capital cost. In this paper, a 24-120-325V two-level DC distribution system for home appliances, each including three parallel DC-DC converters, is modeled. An active load sharing technique is proposed for the on-line optimization of the global efficiency of the DC distribution network. The algorithm aims at the instantaneous efficiency optimization of the whole DC network, based on the on-line load current sampling. A Look Up Table, is created to store the real efficiencies of the converters taking into account components toler…
Experimental Test and Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Approach
In this paper, we propose a reliability-oriented design of a linear generator-based prototype of a wave energy conversion (WEC), useful for the production of hydrogen in a sheltered water area like Mediterranean Sea. The hydrogen production has been confirmed by a lot of experimental testing and simulations. The system design is aimed to enhance the robustness and reliability and is based on an analysis of the main WEC failures reported in literature. The results of this analysis led to some improvements that are applied to a WEC system prototype for hydrogen production and storage. The proposed WEC system includes the electrical linear generator, the power conversion system, and a sea-wate…
A small scale prototype of a wave energy conversion system for hydrogen production
In this paper a small scale prototype of sea wave energy converter for hydrogen production and storage is presented. Laboratory prototypes of the wave energy converter device and sea water electrolyzer are presented. Experimental results are shown. A cost-effective and efficient power electronics system is designed. Experimental waveforms of the wave energy converter are imported in the power electronics simulation model to simulate the whole system as closely as possible to its effective behavior. Simulation results are shown to test the efficiency of the proposed solution.
Current-Sensing Technique for Current-Mode Controlled Voltage Regulator Modules
This paper introduces an innovative current-sense technique for voltage regulator modules (VRMs). The proposed method is applied to a multiphase buck converter although the converter topology does not affect the accuracy or effectiveness of the proposed technique. A RC network is parallel connected with the buck converter low-side MOSFET and the voltage signal across the sense capacitor reconstructs the inductor current waveform. The RC technique benefits from all the advantages of the most popular current-sensing technique, the inductor DC resistance current-sense method, cutting off its main disadvantage. The sense network design is oriented to obtain high immunity to noise and a great dy…
SISTEMI IBRIDI DI ALIMENTAZIONE PER DISPOSITIVI PORTATILI
A fuel cell-based hybrid power supply for portable electronics devices
A fuel cell - supercapacitor hybrid power supply for portable applications is designed. To ensure system level simulation, each component is accurately modeled and simulation results are reported. A Digital Still Camera is selected as specific load device, although the choice of a specific application does not influence the proposed control technique performances but only dictates the power supply specifications. The fuel cell and the power management system are modeled in PSIM. © 2008 IEEE.
Decoupled control scheme of grid-connected split-source inverters
Grid-connected power conversion systems for renewable energy sources must fulfill several requirements, e.g., the high efficiency, the reduced cost and complexity, and, quite often, the boost capabilities that is usually achieved using a front-end dc–dc boost converter before the inversion stage, leading to a two-stage architecture. Meanwhile, single-stage power conversion systems, which perform the boosting operation within the inversion one, offer some potential advantages, in terms of reducing the complexity and the volume of the whole system. Among several proposed options, the split-source inverter (SSI) has been recently proposed by Abdelhakim et al. as an alternative option with some…
Automotive Brushless Motor Powered by Fuel Cell
Extending the Power Range of a Solar Inverter
Solar inverters feature a minimum and maximum limit of the maximum power point voltage. Overcoming these limits leads to a disconnection of the power equipment, thus wasting the solar energy. In this paper, a solution to extend the power range of a solar inverter is presented. The proposed solution extends he minimum maximum power point limit of a commercial solar inverter by means of a battery energy storage system, including a DC/DC power converter. The battery energy storage system is connected in series to the photovoltaic module. If the photovoltaic module voltage drops below the minimum maximum power point limit, the battery energy storage system is enabled thus boosting the input vol…
Optimal Energy Management of Smart Grids With Plug-In Hybrid Electric Vehicles
In this paper, smart grids based on Renewable Energy Sources are addressed. An Italian case study which has been developed in the frame of the research project i-NEXT (Innovation for green Energy and eXchange in Transportation) is presented. Storage elements are included. Electric and fuel cell powered vehicles' charging stations are here included as local loads. In this paper, power management algorithms and the control logic are described. The control subsystem aims at an efficient management of the involved renewable energy sources avoiding faults in the power system and ensuring a fully functional supply of local loads. A “Service Center” software collecting data from renewable sources,…
Modeling and simulation of a digital control design approach for power supply systems
Electronic designers need to model and simulate system features as close as possible to its effective behaviour. Moreover, today, electronics systems are often composed of mixed analog and digital components. The increasing complexity has led to the use of different simulation softwares, each one specific for a particular level of abstraction: mathematical, circuital, behavioural, etc. In order to simulate the entire system these softwares should work together: co-simulation is necessary for digitally controlled power electronics systems. In this paper, the modeling of a digitally controlled switching power supply system using MATLAB/Simulink, ALDEC Active-HDL and Powersys PSIM is presented…
A demagnetization circuit for forward converters
This paper presents a demagnetization circuit able to operate the forward converter with an higher efficiency and with a wider input range. In particular, by the means of few added components, the magnetizing energy and the leakage one are continuously recovered, and the transformer reset and the primary mosfet OFF voltage clamp to the input, both under steady state and transient operations, are provided. The reduced voltage stress allows the converter to operate with a duty extended to unity over the typical 70% limit of the Active Clamp topology, with smaller output inductance, better converter dynamics and wider input range. Furthermore, thanks to this technique, by employing a duty appr…
Measurement-based load modelling for power supply system design
Load modelling is essential to simulate system features as closely as possible to the effective behaviour. In spite of model complexity, the need for accuracy often leads to a component-based approach, i.e. the analysis of load internal subsystems. It is a common belief that measurement-based load models lead to low accuracy. This paper presents a new, high-accuracy measurement-based load modelling approach to define a power consumption profile load model for power systems design. The load modeling technique is described by an application. Simulation and experimental results are compared. The efficiency and portability of the proposed modelling approach is discussed. ©2008 IEEE.
Linear-non-linear digital control technique for dc-dc converters with fast transient response
Effects of post-filtering in grid-synchronization algorithms under grid faults
Abstract The spread of distributed generation systems has reinforced concerns and requirements on grid-tied power converters. The synchronization with the utility voltage vector is a major concern. In the literature, algorithms based on Phase Locked Loops are extensively presented. In spite of adequate performances under ideal and balanced grid conditions, under grid faults great inaccuracies arise. Shortcomings are overcome by advanced algorithms at the expenses of the complexity and computational cost. In this paper, grid synchronization algorithms are addressed. A solution is proposed by introducing a new post-filter stage in a Decoupled Double Synchronous Reference Frame not affecting, …
A digital control technique for high-performances DC-DC converters
An improved Flyback converter
This paper presents a modified Flyback converter able to operate with higher efficiency and smaller size, overcoming most of the conventional flyback converter drawbacks, and also keeping its low cost and simplicity. In particular, the proposed converter allows the mosfet off voltage to be reduced and clamped to the input, thus recovering the transformer leakage energy. As a consequence, the duty cycle can be extended to unity, thus reducing the voltage stress across the output rectifier, and lowering both the magnetizing inductance and the transformer bias current values. In addition, due to the auxiliary mosfet, the magnetizing current can become negative, eliminating the discontinuous co…
A lossless current sensing technique for flyback converters
Regardless of the feedback control, almost all converters require input or output current sense for overcurrent protection. If a current mode control is implemented, high accuracy is also required. The optimal current sensing method shows the highest accuracy and the lowest power dissipation. In this paper, a lossless and accurate current sensing technique for Flyback converters is proposed. An RC network is parallel connected with the primary MOSFET and the voltage signal across the sense capacitor accurately reproduces the magnetizing current waveform. The RC technique benefits from all the advantages of the most common current sensing techniques currently applied to Flyback converters, a…
FPGA implementation of a fuel cell emulator
Fuel cell based systems are usually tested with the aid of high-cost and complex auxiliary devices. A fuel cell emulator is an attractive solution for preliminary downward system test. The emulator replaces the effective power source saving cost, volume and hydrogen reserve still ensuring high-accuracy of test results. The use of a highperformance fuel cell model is essential for a successful conclusion of the overall design process. Although the proposed emulator is suitable for each fuel cell type and power level, a 10W Proton Exchange Membrane Fuel Cell emulator is designed and tested. An FPGA based controller models the fuel cell steady-state and dynamic behaviour, including temperature…
Dedicated anlog-to-digital converter for digital VRM
Non linear digital control improving transient response:design and test on a multiphase VRM
Achieving maximum power transfer in a multi-source renewable system
A steady-state and dynamic fuel cell model for power electronics design
A fuel cell model emulator, including temperature effects
Experimental validation of a distribution theory based analysis of the effect of manufacturing tolerances on permanent magnet synchronous machines
An experimental study on the effect of permanent magnet tolerances on the performances of a Tubular Linear Ferrite Motor is presented in this paper. The performances that have been investigated are: cogging force, end effect cogging force and generated thrust. It is demonstrated that: 1) the statistical variability of the magnets introduces harmonics in the spectrum of the cogging force; 2) the value of the end effect cogging force is directly linked to the values of then remanence field of the external magnets placed on the slider; 3) the generated thrust and its statistical distribution depend on the remanence field of the magnets placed on the translator.
Research on the model emulator and experiment checkout of the fuel cell
A review of fuel cell based hybrid power supply architectures and algorithms for household appliances
Abstract Nowadays, renewable power system solutions are widely investigated for residential applications. Grid-connected systems including energy storage elements are designed. Advanced research is actually focused on improving the reliability and energy density of renewable systems reducing the whole utility cost. Source and load modeling, power architectures and algorithms are only a few topics to be addressed. Designers have to carefully deal with each subtopic prior to design efficient renewable energy systems. In the literature, each topic is separately discussed and the lack of a unique reference guide is clear to power electronics designers. In this paper, each design step including …
Reducing DC Link Voltage Unbalance in a Fault-Tolerant Inverter
Today, continuous working of power inverter drives is mandatory for several applications. Damages to materials, machines or even risks to human life have to be absolutely avoided. In the literature, fault-tolerant algorithms and architectures to achieve a successful fault handling are investigated. Researchers aim at reducing the number and cost of additional components, improving at the same time the inverter performances under postfault conditions. Cost, post-fault power derating and increasing distortion are usually conflicting requirements. In this paper, a fault-tolerant three phase inverter is presented. A reconfigurable architecture and a novel fault-tolerant algorithm is designed to…
Online optimization of a multi-conversion-level DC home microgrid for system efficiency enhancement
In this paper, an on-line management system for the optimal efficiency operation of a multi-bus DC home distribution system is proposed. The operation of the system is discussed with reference to a distribution system with two conversion stages and three voltage levels. In each of the conversion stages, three paralleled DC/DC converters are implemented. A Genetic Algorithm performs the on-line optimization of the DC network’s global efficiency, generating the optimal current sharing ratios of the concurrent power converters. The overall DC/DC conversion system including the optimization section is modelled using MATLAB/Simulink. Thanks to the implemented online algorithm, considering …
A DC-DC power converter for PV module characterization
In this paper, a standard-compliant electronic load setup for PV module curve detection which features high accuracy, low cost and components count is proposed. The proposed device is based on a DC-DC power converter in open-loop configuration. The proposed system is designed according to regulation constraints in order to achieve high performances in curve detection. Design criteria are discussed. The model is implemented in PSIM environment. Simulation based on data input of a commercial PV Conergy E215P module are carried out under several environmental conditions to show the accuracy of the proposed electronic load. Simulation results are reported.
Fuel cell analytical modeling: Solving the trade-off between accuracy and complexity
In this paper, a 5.5 kW Proton Exchange Membrane fuel cell is modeled. The proposed analytical model is described and the parameters identification procedure is further discussed. Simulation results of all three sub-models are compared to test the accuracy of each one. A comparison between simulation and experimental results is provided as well validating the modeling approach.
A measurement setup for electric bicycles powered from renewable energy sources
In this paper a measurement system for a pedalassist rickshaw is described. It has been designed and realized with the purpose of a deep analysis of operating time, range and general performance of the prototype vehicle. The three-wheel velocipede under test, developed in the SDES laboratory of the University of Palermo, is equipped with two battery packs, and a photovoltaic panel which is used to recharge one of the packs at a time. To further improve the autonomy of this mean, a fuel cell will be added as a power source, whose consequent improvement in performance could be easily investigated by the presented measurement setup. An Arduino board has been employed to receive and store all c…
Experimental test on a Contactless Power Transfer system
Contactless Power Transfer (CPT) is an ever-growing technology in automotive market, due to the significant improvement brought by it to battery charging operation in terms of safety and comfort. CPT is based on inductive coupling between two coils, so that power cords can be avoided for vehicles battery charging and an important contribution towards a smarter mobility can arise. In this paper, a CPT prototype for E-bike is proposed. Magnetic design and power electronics system are described. Experimental results deriving from laboratory tests are presented and power efficiency of the system is addressed.
A wireless battery charger architecture for consumer electronics
In this paper, an innovative design of a wireless battery charger for portable electronic devices is proposed. The wireless power transfer is implemented through the magnetic coupling between a power transmitter, which is connected to the grid, and a power receiver, which is integrated inside the load device. An innovative receiver architecture which heavily improves the power conversion efficiency is presented. The proposed solution is standard compliant and suitable for IC implementation. A comparison between a conventional and the proposed receiver architectures is carried out by SPICE simulations. As shown by simulation results, a power efficiency increase by 40% is provided by the prop…
Measurement-based load modelling for power supply systems design
Nonlinear digital control circuit and method for a DC/DC converter
Wireless battery charging: E-bike application
Nowadays, Inductive Power Transfer (IPT) represents a widely investigated issue with respect to modern battery charging methods, by providing a wireless solution. IPT is applied across a large variety of applications, from Watt to kWatt power levels. Although IPT features great benefits in terms of safety and comfort, the most significant drawback consists of a relatively poor power conversion efficiency. In this paper, a 100W wireless charging equipment for E-bikes which improves efficiency is proposed. Complete magnetic structure design, as well as transmitter and receiver efficient architectures, are deeply exposed. The efficiency of the designed solution is shown by simulation results.
Inductive Power Transfer for 100W battery charging
Today, Inductive Power Transfer (IPT) is widely investigated to provide wireless battery charge. Potential applications range from a few Watts of handheld devices to kWatts of automotive applications. Despite of comfort and safety options, wireless charging features relatively poor power conversion efficiency. In the literature, several solutions are proposed addressing efficiency related issues. In this paper, a 100W wireless charging station for electric bikes which improves the power conversion efficiency is proposed. The magnetic structure design is analyzed thoroughly as well as the proposed power electronics system architectures of both the power transmitter and power receiver. The ef…
A steady state and dynamic fuel cell model including temperature effects
In the last few years fuel cells have attracted much interest from both academic and industrial researchers to replace current lithium-ion and similar rechargeable battery systems. A wide variety of research areas benefit from fuel cell use: electro-chemical, stationary, transportation and portable electronics can be cited as an example. Potential applications range from few watts to megawatts systems. Even concerning quite different scientific areas, fuel cell modelling is a common requirement. The complexity of such a topic relies not only on the modelling approach but also in the model structure and implementation. In this paper a steady state and dynamic fuel cell circuital model includ…
Fuel cell modelling for power supply systems design
Today academic and industrial research is addressed on fuel cell based power supply to replace current lithium-ion and similar rechargeable battery systems. For system simulation, fuel cell models are developed. Even if power electronics designers demand for a blackbox model to limit the knowledge of physical and chemical parameters, high performance in terms of model accuracy and portability is absolutely necessary. A steady state and dynamic fuel cell model oriented to power supply systems design is proposed and, as an example, the implementation on PSIM software is presented. Simulation and experimental results are compared and the model portability is discussed. ©2008 IEEE.
A standard-compliant prototype for PV module curve detection
In this paper, a prototype for PV module curve detection which features low cost and size and ensures high accuracy is proposed. The proposed architecture is based on a buck-boost converter in open-loop configuration. The proposed architecture is fully compliant with actual standard IEC60904. The duty-cycle control algorithm and its own effects on system performances are accurately investigated. The comparison of different duty-cycle patterns is carried out and performance evaluation is performed. Simulation results are shown to perform a valuable comparison of control algorithms. Preliminary experimental results on a laboratory prototype are presented.
A fuel cell-battery hybrid power supply for portable applications
Today, academic and industrial research is addressed to fuel cell based hybrid power supply in many fields of applications including stationary, automotive and portable electronics. Increasing source runtime, speeding up the transient response while minimizing weight, volume and cost of the power supply system are key requirements of all applications. According to the particular application, the power management system is optimized for a specific feature. In this paper, a fuel cell–battery hybrid power supply for a Digital Camera is proposed, although the control algorithm can be efficiently applied to any portable device. Thanks to an innovative control on the input power, any fuel cell pr…
A novel digital control technique for DC/DC converters to improve steady-state performances
High Accuracy Modelling of Hybrid Power Supplies
This chapter proposes a modelling approach based on the PSIM/Simulink co-simulation toolbox for hybrid power supplies, featuring high accuracy. Hybrid source performances are fully tested during behavioural simulations. The importance of high-accuracy modelling is investigated and modelling guidelines for both power sources and load are given for further applications. The Simulink model is analyzed and the efficiency of the proposed approach is verified by the comparison between simulation and experimental results. In the last few years, hybrid power supplies are investigated for a wide variety of application areas: two primary sources are coupled to take advantages of both, overcoming thei…
A circuit model of a 5kW fuel cell
In the last few years, industrial research has been focused on renewable energy sources. Owing to combined heat-power generation option, fuel cells have attracted much interest for a wide variety of research areas. Household appliances are still the most promising applications. Fuel cell modeling is still a critical topic to focus on, affecting each stage of power system design. This paper describes an empirical method to model a proton exchange membrane fuel cell. The modeling approach is applied to a 5kW Nuvera PowerFlow fuel cell. A circuit model is proposed for further applications. PSPICE implementation is described and the parameters tuning procedure is discussed. Simulation and exper…
A lossles current sensing technique for flyback converters
Experimental test on a fuel cell powered brushless synchronous motor for automotive applications
In this paper, a fuel cell powered motor emulator is proposed. The MATLAB/Simulink model including the fuel cell stack, the motor and drive models is described. The Urban Driving Cycle test is performed in MATLAB environment. Effective operating conditions of the whole fuel cell powered motor are accurately emulated according to actual regulations in force. The emulated current profile is used for experimental tests on a 5kW Nuvera PowerFlow stack. Thanks to the proposed approach, the motor and inverter drives are accurately emulated and the provided test-bench is used to evaluate performances of the stack under test for automotive applications. Simulation and experimental results are compa…
Design of wave energy converter (WEC): A prototype installed in Sicily
The purpose of this work is to describe a possibility of installation of a wave converter in Sicily, in the Mediterranean Sea. In this paper we present the design of buoyant electrical generator, in particular, wave linear permanent magnet generator which can make wave energy converted to electrical energy.
Control subsystem design for wireless power transfer
Recently, the wireless power transfer has been increasingly employed. Particularly for the electric vehicles, the wireless solution is attractive for contactless battery charging, based on the Inductive Power Transfer (IPT). In this paper, a 150W prototype for IPT-based battery charging is presented and design criteria are reported. In addition to the power stage analysis, a proper control strategy is proposed. Simulation and experimental results are shown. The proposed control method aims at regulating the load current against variations in the magnetic coupling, so that the required amount of power can be supplied despite of unexpected decreases in the coupling efficiency.
A novel fuel cell-based power system modeling approach
Nowadays, fuel cells are the most promising source of energy for stationary applications. Unfortunately, the power density of fuel cells is not adequate for modern applications. A fuel cell - based hybrid power supply is required. The fuel cell is coupled with a high-energy density power source to improve performances of the composite power source. A power management stage is introduced between the two basic sources to control the power flow path from the fuel cell to the auxiliary source and the load. In order to avoid effects of a limited power density of the fuel cell on the whole power supply, sophisticated power management algorithms are implemented. Accurate modeling is required to te…
Design, modeling, and simulation of a photovoltaic water pumping system
Electric pumps cannot be fed in those areas where they are not connected to the electric public distribution grid. In those areas, it is useful to feed electric pumps by means of the electricity generated from renewable energy sources plants. Among these, the Solar Water Pumping Systems feed electric pump thanks to the electricity generated by a photovoltaic plant. In this paper, a whole SWPS is fully designed, modelled, and simulated in Matlab environment. The proposed implementation is an useful tool for SWPS testing.
Design and control of a novel multi-source renewable energy system
In this paper, a novel multi-input, single-inductor architecture is proposed. An innovative hysteretic control strategy of both the output voltage and the sources operating point control is designed and tested. Benefits brought by the proposed architecture over existing solutions are widely investigated. As an example, the design of a 48 V dual input system which is fed by photovoltaic and thermo-electric generators is proposed. Design guidelines are given and simulation results are presented to test the efficiency of the proposed architecture.
A multi-input, single-inductor power system for multisource energy harvesting
Today, energy harvesting is drawing a great deal of attention due to modern trends in energy saving and sustainable development purposes. Among renewable energy sources fuel cells and photovoltaic arrays are the most promising for a wide variety of applications, ranging from few mWatts of wireless sensor networks to kWatts for household appliances. Coupling several harvesters and renewable sources is the winning strategy to ensure a proper supply overcoming the uncertainty and limited availability of common harvesters and renewable sources. Multisource energy harvesting is actually an open research topic involving several pressing and often conflicting requirements. System cost, complexity,…
E-bike battery charging: Methods and circuits
Today, academic and industrial research is focused on innovative battery charging methods to ensure complete mobility of both handheld devices and electric vehicles. Wireless power transfer is actually the leading strategy even if efficiency related issues are to be solved for a successful marketing. In this paper, a wireless battery charging station is proposed for electric assisted pedal bikes. If compared with existing wireless solutions, the proposed system architecture improves power conversion efficiency of the charging equipment. The simulation model of the whole charging station is described in detail. The transmitter, receiver and inductive coupling circuits are described and desig…
Mathematical modelling of an inverter-based distributed generator
In this paper, a modeling approach of a three phase power inverter based on an electrostatic synchronous machine is presented. By the proposed approach, any inverter-based distributed generator in a microgrid can be replaced by an equivalent electrostatic machine. This paper aims to promote the use of the proposed modeling approach in the analysis of microgrid stability. Thanks to the proposed modeling approach, transient performances of on-grid operation of converter-based distributed generators could be easily analyzed by multi-machine models. Parameters of the equivalent synchronous electrostatic machine model are derived to achieve equivalence with the inverter model. Small signal model…
Application of Thermographic Techniques for the Detection of Failures on Photovoltaic Modules
The paper focuses on thermography as a useful investigation tool for diagnosis, detection and prevention of failures of photovoltaic modules. The paper describes the faults detectable by thermographic investigations and how to conduct these investigantions. Then the results of some analyses conducted on a photovoltaic field are presented. The investigations made possible to identify faulty modules with hot spots by measuring localized superheat due to the presence of concentrated deposits on the exposed surface of the module and the superheating due to the presence of sand/dust deposits distributed on a significant portion of the module surface. The thermographic investigations can be used …
A FUELL CELL-BASED HYBRID POWER SUPPLY FOR PORTABLE ELECTRONICS DEVICES
A fuel cell-supercapacitor power supply for portable applications
Due to the increasing number and complexity of the available functions, modern handheld devices require higher and higher current slew rates. Customers' requirements lead to a growing interest in longer-lasting power, fast transient response power supply systems and minimization of system weight, volume and cost. Fuel cell based hybrid systems are designed to meet all requirements. In this paper, a fuel cell-supercapacitor hybrid power supply for portable applications is proposed. The power management subsystem is designed and simulation results are shown to test the efficiency of the control algorithm. ©2008 IEEE.
Guidelines proposal for a good and durable WEC design
In this paper, preliminarily a proposal for design guidelines for a “good” design of wave energy converter is presented and successively a small scale prototype of a wave energy converter including the buoyant electrical generator, the power electronics equipment and a sea water electrolyzer is designed on the basis of these guidelines and presented.
Reliability Analysis of Three Homogeneous Fault-tolerant Inverter Topologies
Abstract—In this article, non-redundant fault-tolerant inverter topologies are addressed. A novel fault-tolerant control strategy which enhances performances during post-fault operation is proposed. Benefits from the proposed strategy over conventional fault-tolerant topologies are investigated in terms of system reliability. Cost, post-fault performances, and system reliability of the proposed solution are compared with both a conventional triac-based fault-tolerant inverter and a T-type inverter. The reliability analysis of each selected configuration is carried out by means of Markov chains. The analysis is validated through a comparison of reliability and sensitivity curves. As shown by…
Linear-non-linear digital control for dc/dc converters with fast transient response
A linear-non-linear digital control for multi-module DC/DC converters that improves system stability, solves the limit-cycle problem, reduces recovery time and limits over- and under-shoots in regulated output voltage, is presented. A simulation model in Matlab-Simulink/Active-HDL mixed environment is described. Preliminary hardware tests on a single-phase step-down converter are reported. Simulation and experimental results are shown.
SISTEMA E METODO PER LA GESTIONE DI SORGENTI DI ENERGIA RINNOVABILE
Fuel cell modelling and test: Experimental validation of model accuracy
In the last few years, renewable energies have been encouraged by worldwide governments to meet energy saving policies. Among renewable energy sources, fuel cells have attracted much interest for a wide variety of research areas. Fuel cell-based residential-scaled power supply systems take advantage of simultaneous generation of power and heat, reducing the overall fossil fuel consumption and utilities cost. Modeling is one of the most important topics concerning fuel cell use. In this paper, a measurement-based steady-state and dynamic fuel cell model is presented. The proposed modelling approach is implemented on a 5kW Proton Exchange Membrane Fuel Cell. The parameters identification proc…
Experimental test of the performances of a photovoltaic modules model
In this paper, a measurement-based modeling technique for PV panels oriented to power electronics design is proposed. The proposed modelling approach aims at an accurate modeling of the whole PV curve and not only around a few remarkable points. The proposed approach is based on an experimental characterization of the module under test. In fact, the incompleteness of manufacturers' data and the knowledge of physical parameters are the main source of inaccuracy in existing modelling approaches. The proposed approach is applied to a four lumped parameters model of a Conergy E215P solar module. Tests are performed under natural light. The parameter identification procedure is described in deta…
A fuell cell-supercapacitor hybrid power supply for portable applications
Decoupled control scheme of the grid-connected split-source inverter for renewable energy sources
Grid-connected power conversion systems for renewable energy sources must fulfill several requirements, including high efficiency, reduced cost and complexity, and, quite often, also boost capabilities from the dc sources to the ac power grid. For such applications, single-stage power converters with boost capabilities offer some potential advantages. Among several proposed options, split-source inverter (SSI) has been recently investigated. This paper proposes a decoupled control scheme for the SSIs, where the common mode term of the ac modulation signals is used to control the dc input current. Thus, the dc input current and ac output current can be controlled independently. The proposed …
A Permanent Magnet Linear Generator for the Enhancement of the Reliability of a Wave Energy Conversion System
In this paper, a linear generator for a highly reliable Wave Energy Conversion system is designed and tested. In order to store energy, the system is able to produce hydrogen The Wave Energy Conversion System consists of an electrical linear generator, a power conversion system and a sea-water electrolyzer. A small scale prototype of the system has been designed and built. The design is oriented to the enhancement of the system robustness and reliability and a Failure Mode and Effects and Criticality Analysis (FMECA) has been used. In order to guarantee an easy extension of the power capability of the marine plant, a modular architecture of the system has been adopted. The design strategy i…
Experimental test on a fuel cell-supercapacitor hybrid power supply for a digital still camera
Wireless battery chargers for portable applications: Design and test of a high-efficiency power receiver
In this study, the authors present a 5 W wireless battery charger for handheld devices. Efficiency-related issues are addressed. A power receiver architecture which improves power conversion efficiency is proposed. Design hints are provided for further applications. Comparison with a conventional architecture is provided as well. Laboratory prototypes of both the proposed and the conventional architectures have been realised. Both prototypes are tested by using the same power transmitter to perform a valuable comparison. As shown by the experimental results, in the receiver side power conversion efficiency is increased up to 99% thanks to the proposed solution.
MATLAB Co-Simulation Tools for Power Supply Systems Design
ion level. Circuit simulation software as Powersim PSIM and Orcad Pspice are the most common choice for circuit modelling. In (Basso, 2008), the design and simulation of switchmode power supplies is deeply analyzed and simulation tips in several environments are proposed. ASIC simulation and verification tools as Xilinx ISE/Modelsim or Aldec ActiveHDL are available to implement the digital controller by the VHDL or VERILOG source code. Since the interaction between subsystems is the most common source of faults, testing separately analog and digital subsystems by the means of different verification tools is a severe mistake. Matlab is a powerful simulation environment for mixed-mode systems…
A High-Efficiency, Low-Cost Solution for On-Board Power Converters
Wide-input, low-voltage, and high-current applications are addressed. A single-ended isolated topology which improves the power efficiency, reduces both switching and conduction losses, and heavily lowers the system cost is presented. During each switching cycle, the transformer core reset is provided. The traditional tradeoff between the maximum allowable duty-cycle and the reset voltage is avoided and the off-voltage of active switches is clamped to the input voltage. Therefore, the system cost is heavily reduced and the converter is well suited for wide-input applications. Zero-voltage switching is achieved for active switches, and the power efficiency is greatly improved. In the output …
Efficiency optimization in bi-directional inductive power transfer systems
Inductive Power Transfer (IPT) allows to wirelessly supply electronic devices. Thus, it is a very smart technique of battery charging for electric vehicles. In a parking area scenario, IPT is a proper method aiming at the energy transfer from the vehicle battery to the electric grid too. Bi-Directional Inductive Power Transfer (BDIPT) Systems are an attractive solution for the automotive market. Due to the great relevance of the energy saving problem, the goal of an efficiency maximization is researched by the energy market. In this paper, an in-depth investigation of the power efficiency in BDIPT systems is carried out, aiming at the optimum efficiency.