0000000000214433
AUTHOR
Jan Ove Odden
Performance of grid-connected PV system in Southern Norway
This paper presents performance results from one of the first grid-connected photovoltaic (PV) systems in Norway. The 45 kWp system is mounted on top of a flat roof at the headquarters of a local utility company, Agder Energi, in the coastal town of Kristiansand. The system consists mainly of multi-crystalline silicon modules, with one thin film array. The system has been in operation since May 2011 and is instrumented for research and monitoring purposes. Data recorded include global and diffuse horizontal irradiation, tilted irradiation and other weather parameters, PV module temperatures, DC and AC current and voltage for three arrays, in addition to inverter power data and voltage quali…
Reduction of temperature coefficients in multicrystalline silicon solar cells after light-induced degradation
This study focuses on the variations of the temperature coefficients after light-induced degradation (LID) of compensated multicrystalline silicon solar cells from three different ingots. The ingots have been chosen to see the effect of the compensation level, the resistivity and the impact of adding gallium to keep the resistivity as constant as possible along the ingot. The temperature coefficients of the efficiency experience a major decrease after LID on all ingots. We found that this decrease varies along the ingot height and does not correspond to the VOC drop. Moreover, no direct correlation with the interstitial oxygen concentration profiles could be seen.
Accelerated Light-Induced Defect Transformation Study of Elkem Solar Grade Silicon
AbstractSolar cells made of silicon feedstock from a metallurgical route must qualify not only the initial efficiency, but must also be comparable to the solar cells made from reference polysilicon on the spectral response after light induced degradation. A detailed comparative study of light induced defects and its impact on cell performance is necessary for both materials. We have studied accelerated light induced degradation (ALID) defect transformation for Elkem Solar Silicon and polysilicon solar cells by selecting wafers from different positions from respective silicon bricks. Active boron-oxygen complexes and iron ions in multicrystalline silicon solar cells have been analyzed, and t…
Simulated and measured temperature coefficients in compensated silicon wafers and solar cells
Abstract In this paper we perform a thorough investigation of the temperature coefficients of c-Si solar cells and wafers, based on both experimental data and device simulations. Groups of neighboring wafers were selected from different heights of four high performance multicrystalline silicon ingots cast using different dopants concentrations and Si feedstocks; Three different target resistivities of compensated silicon ingots based on Elkem Solar Silicon (ESS®), which are purified through a metallurgical route, and one non-compensated reference ingot. The wafers were processed into Al-BSF and PERCT type solar cells, as well as into lifetime samples subjected to selected solar cell process…
Impurity analyses of silicon wafers from different manufacturing routes and their impact on LID of finished solar cells
Summarizes the measurements of impurity concentrations in directionally solidified silicon ingots from different feedstocks. The substitutional Carbon and interstitial Oxygen are measured on as-sawn wafers using FTIR. Active iron concentration is mapped on a-Si:H passivated wafers. It is observed that these impurities present in Elkem Solar Grade Silicon (ESS™) concentrations are comparable to the standard polysilicon which are in the acceptable ranges for silicon for solar industry. The measured LID of the finished solar cells is also comparable.
Temperature Coefficients of Compensated Silicon Solar Cells – Influence of Ingot Position and Blend-in-ratio
Published version of an article in the journal: Energy Procedia. Also available on Science Direct: http://dx.doi.org/10.1016/j.egypro.2015.07.004 Solar-grade silicon made from a metallurgical route presents boron and phosphorus compensation. Earlier work has shown that cells made from such material produce more energy than reference polysilicon modules when the temperature and irradiance is high. In the present study, solar cells from two different ingots with different blend-in-ratios were made from wafers at varying ingot heights in order to investigate how the temperature coefficients vary with compensation level and ingot height. The results suggest that solar modules made with solar ce…
Performance assessment of a grid-connected mc-Si PV system made up of silicon material from different manufacturing routes
Summarises the performance of an Elkem Solar photovoltaic (PV) system installed in the Sunbelt Region (between 35 North and 35 South) in Hyderabad, India, which has been fully operational since August 2012. The PV system consists of 28 multicrystalline silicon PV modules made from the standard Siemens process and from material produced by a metallurgical route - the Elkem Solar Silicon (ESS™) process. A comparative performance study of the ESS™ modules with respect to standard polysilicon has been carried out under the various climatic and solar radiation conditions at the location. The present study suggests that the ESS™ PV modules have a slightly better performance than standard polysili…
Two years performance comparison of Elkem Solar multicrystalline silicon with polysilicon in a PV grid-connected system
This abstract summarizes two years performance of an Elkem Solar and polysilicon photovoltaic (PV) system installed in the Sunbelt Region, which has been fully operational since 2011. The PV system consists of 28 multicrystalline silicon PV modules made from the standard Siemens process and from material produced by a metallurgical route - the Elkem Solar Silicon (ESS®) process. The present study suggests that after two years of field operation, both types of modules show similar degradation of power at STC. The ESS® PV modules have better performance than standard polysilicon modules as a function of solar irradiation, and thereby the total kWh generated has been slightly higher for the ES…
On the Variability of the Temperature Coefficients of mc-Si Solar Cells with Irradiance
Abstract The temperature sensitivity of silicon solar cells is in general assumed to be constant with irradiance in PV forecasting models, although it has been demonstrated experimentally that this is not true. In this study a theoretical model is established that describes the variation of the temperature coefficients of a silicon solar cell as a function of the irradiance. It is shown that the temperature sensitivity of the solar cell efficiency is decreasing with the irradiance and that the main reason for this behavior comes from the increase of the open-circuit voltage with light intensity. Moreover, a dependency of the cell's ideality factor on the irradiance has to be assumed to rece…
Microscopic defects and impurity analyses of multicrystalline silicon solar cells from different manufacturing routes
It is important to fully understand the physical behavior of solar cells made by materials from alternative process routes. Solar cells from Elkem Solar Grade Silicon and standard polysilicon have been investigated with light beam induced current and electroluminescence imaging. The low efficiency regions have been further analyzed by Scanning Electron Microscopy under different imaging modes. It was found that cell regions of low performance had undergone plastic deformations resulting in the creation of crystalline defects appearing as subgrain patterns. Similar patterns were observed in both ESS™ and standard polysilicon. Energy-dispersive X-ray spectroscopy (EDS) and electron backscatte…
Temperature Dependent Quantum Efficiencies in Multicrystalline Silicon Solar Cells
Abstract Several field studies comparing modules based on Elkem Solar Silicon ® (ESS ® ) cells with reference modules based on non-compensated virgin polysilicon show that the compensated ESS ® modules outperform the reference modules with comparable installed capacity under certain operating conditions. At high temperatures and high irradiation conditions the modules based on compensated silicon produce more energy than the reference modules. In order to increase the understanding of the observed effect cells are studied at different temperatures by the means of IV-characteristics as well as quantum efficiencies. Quantum efficiency measurements show that the main difference between ESS ® c…
Temperature Dependent Suns-V<inf>oc</inf> of Multicrystalline Silicon Solar Cells from Different Ingot Positions
This paper presents temperature dependent Suns- Voc measurements on multicrystalline silicon cells originating from different ingot positions. The effective lifetime is found to increase for all cells when the temperature is increased from 25°C to 6°C. However, cells from the top of the ingot show a considerably larger increas 40–50% for illumination conditions of 0.1-1 Sun, compared to an increase of 20-30% observed for cells from the bottom. The decrease in Voc with increasing temperature is found to be lower for cells from the top of the ingot compared to cells from the bottom. The temperature coefficient of the Voc is found to vary 5% along the ingot at 1 Sun, highlighting the influence…
Initial light-induced degradation study of multicrystalline modules made from silicon material processed through different manufacturing routes
The paper presents results of initial lightinduced degradation (LID) of multicrystalline silicon photovoltaic (PV) modules made of crystalline silicon from different manufacturing processes. The modules were installed within the Sunbelt, in Hyderabad, India. Current-voltage (I–V) characteristics are measured and infra-red (IR) images of the modules are taken at regular intervals. A relationship of the IV degradation with the IR images is discussed. Results from laboratory LID tests at room temperature are performed parallel to the outdoor degradation of PV modules. It was found that the total LID, measured on the module level, after the initial 40 hours is similar for both materials resulti…
Influence of spectral composition on the temperature coefficients of solar cells from Elkem Solar
The temperature coefficients of solar cells from two different feedstocks — a compensated silicon, the Elkem Solar Silicon (ESS®), and polysilicon - under full and selective parts of the light spectrum are presented based on results obtained using a AAA sun simulator. These results are of particular interest in understanding the possible causes behind the better temperature coefficients usually observed for ESS® compared to polysilicon solar cells when measured with a full AM1.5 spectrum. The optical filtered lights from four different regions of the spectrum have been used to examine the influence of temperature coefficients on the spectral composition. ESS® solar cells showed considerable…
How Gettering Affects the Temperature Sensitivity of the Implied Open Circuit Voltage of Multicrystalline Silicon Wafers
The temperature sensitivity of the open circuit voltage of a solar cell is mainly driven by changes in the intrinsic carrier concentration, but also by the temperature dependence of the limiting recombination mechanisms in the cell. This paper investigates the influence of recombination through metallic impurities on the temperature sensitivity of multicrystalline silicon wafers. Spatially resolved temperature dependent analysis is performed to evaluate the temperature sensitivity of wafers from different brick positions before and after being subjected to phosphorus diffusion gettering. Local spatial analysis is performed on intra-grain areas, dislocation clusters and grain boundaries. Lar…
Temperature Coefficients of Crystal Defects in Multicrystalline Silicon Wafers
This article investigates the influence of crystallographic defects on the temperature sensitivity of multicrystalline silicon wafers. The thermal characteristics of the implied open-circuit voltage is assessed since it determines most of the total temperature sensitivity of the material. Spatially resolved temperature-dependent analysis is performed on wafers from various brick positions; intragrain regions, grain boundaries, and dislocation clusters are examined. The crystal regions are studied before and after subjecting the wafers to phosphorus gettering, aiming to alter the metallic impurity concentration in various regions across the wafers. Most intragrain regions and grain boundarie…
Experimental Investigation of the Optimal Ingot Resistivity for both the Cell Performances and the Temperature Coefficients for Different Cell Architectures.
Compensation engineering enables the achievement of lower ingot resistivities with relatively constant performances along the ingot height. In this paper the impact of the bulk resistivity on the cell performances and the temperature coefficients is investigated for compensated and non-compensated multicrystalline silicon. Based on experimental data we show that reducing the bulk resistivity below a certain value improves the temperature coefficients but deteriorates the cell performances for two distinct cell architectures (AI-BSF and PERCT). Moreover this performance loss is not balanced out by the improved temperature coefficient for operating conditions below 70°C.
UV-induced Degradation Study of Multicrystalline Silicon Solar Cells Made from Different Silicon Materials
Abstract The effect of ultraviolet-induced degradation (UV-ID) on solar cells made from two different solar grade materials has been compared. By using identical wafer and cell production units, effects originating in the two materials; solar grade produced by the Elkem Solar method (ESS™) was compared to standard polysilicon solar cells. Silicon wafers were selected precisely from similar positions from respective silicon bricks to process identical standard solar cells. The quantum efficiency maps at particular laser wavelengths and IV parameters of all solar cells were measured before and after UV-ID to visualize defects sites in the solar cells and to observe the extent of degradation. …
Irradiance Dependent Temperature Coefficients for MC Solar Cells from Elkem Solar Grade Silicon in Comparison with Reference Polysilicon
Abstract An increase in sun intensity enhances the output power of the solar cells, but at the same time the rise of cell temperature affects its electrical performance negatively. The present authors have made a comparative study on temperature coefficients at various irradiances of multicrystalline solar cells made from the standard Siemens process and from material produced by a metallurgical route – the Elkem Solar Silicon (ESS®) process. Such temperature coefficients measured while exposed to various irradiance levels are essential to build a better understanding and prediction of field performance of solar cells manufactured from various feedstock types. In the current experiment, the…
Temperature Sensitivity of Multicrystalline Silicon Solar Cells
This paper presents an experimental investigation of the temperature coefficients of multicrystalline silicon solar cells. The aim was to determine if some cell parameters can affect positively the temperature sensitivity without detrimental impact on the efficiency. Commercial solar cells with different bulk resistivities, compensation levels, and cell architectures have been studied. We report that the base net doping, the location of the solar cell along the brick and the cell architecture have significant impacts on the temperature coefficients. Moreover, we show how the change in recombination mechanisms along the ingot height affects the temperature coefficients. The compensation leve…
Minority Carrier Lifetime Variations in Multicrystalline Silicon Wafers with Temperature and Ingot Position
The minority carrier lifetimes of multicrystalline silicon wafers are mapped using microwave photoconductive decay for different temperatures and ingot positions. Wafers from the top of the ingot display larger areas with lower lifetimes compared to wafers from the bottom. The lifetimes of low-lifetime areas are found to increase with the temperature, while the lifetimes of some high-lifetime areas decrease or remain unchanged. The relative improvement of the low-lifetime areas is considerably larger than the relative change in the high-lifetime areas. We suggest that the above-mentioned observations explain, at least partially, why previous studies have found the relative temperature coeff…
Results on performance and ageing of solar modules based on Elkem Solar Silicon (ESS™) from installations at various locations
Abstract The present study aims to present the current status of the results obtained using Elkem Solar Silicon (ESS™) as feedstock basis for solar cell and modules. It is shown that solar cells based on ESS™ are able to follow the development of the solar industry obtaining comparable efficiencies to standard polysilicon based cells. The characteristics of ESS™ based solar cells, having normally higher V oc and FF and lower I sc , seem to give clear advantages in the field for solar modules located at high irradiance areas. Results from several locations show enhanced electricity production of ESS™ based solar modules compared to polysilicon at increasing solar irradiance. This is explaine…
Scanning electron microscopy analysis of defect clusters in multicrystalline solar grade silicon solar cells
Solar cells from an identical commercial manufacturing unit have been investigated by electroluminescence to first detect the defect clusters. A further analysis has been done by scanning electron microscopy in secondary electron imaging mode to understand the propagation mechanism of defects. It appears that defect cluster boundaries can be very sharp or spread in the bulk with little apparent effect on the overall cell efficiency. And it is shown that grain boundaries act clearly as arrests to further propagation of these defects.
Reduced temperature sensitivity of multicrystalline silicon solar cells with low ingot resistivity
This study presents experimental data on the reduction of temperature sensitivity of multicrystalline silicon solar cells made from low resistivity ingot. The temperature coefficients of solar cells produced from different ingot resistivities are compared, and the advantages of increasing the net doping are explained.