0000000000265956
AUTHOR
P. Bernhard
Investigations of the corrosion protection of ultrathin a-C and a-C:N overcoats for magnetic storage devices
Abstract The thickness-dependent corrosion protection of carbon overcoats for magnetic hard disks can be analyzed by collecting X-ray absorption near edge structure (XANES) spectra at the Co L3-edge. Co is the main constituent of the protected magnetic media underneath. The spectra of the Co absorption edge display a strong peak for pure metallic, non-oxidized Co. This peak splits up into several sub-structures for oxidized Co. Therefore, XANES spectra provide a straightforward method to determine the overcoat thickness, leading to closed coverage and corrosion protection of the underlying material. A similar approach was carried out by X-ray photoelectron spectroscopy (XPS). Standard a-C:N…
Nanoelectron spectroscopy for chemical analysis: a novel energy filter for imaging x-ray photoemission spectroscopy
An ovel instrument for imaging ESCA is described. It is based on a tandem arrangement of two hemispherical energy analysers used as an imaging energy filter. The main spherical aberration (α 2 -term) of the analyser is corrected by the antisymmetry of the tandem configuration. The kinetic energy range useable for imaging extends up to 1.6 keV; this is compatible with Mg and Al Kα laboratory x-ray sources. First experiments on the chemical surface composition of a Cu0.98Bi0.02 polycrystal, a GaAs/AlGaAs heterostructure and Ag crystallites on Si(111) have been performed using synchrotron radiation. The results reveal an energy resolutio no f190 meV and a lateral resolution (edge resolution) o…
Diamond nucleation on iridium: local variations of structure and density within the BEN layer
Abstract The diamond nuclei generated by the bias enhanced nucleation (BEN) on iridium are gathered in well defined areas (“domains”). In atomic force microscopy (AFM) measurements they become manifest in a 1 nm downward step. The fine structure of the carbon layer inside and outside these domains has been studied by small spot Auger electron spectroscopy (AES), high resolution transmission electron microscopy (HRTEM), AFM and lateral force microscopy (LFM). The Auger spectra of the carbon KLL peak taken in an ultra high vacuum setup revealed diamond features inside and more graphitic features outside the domains. The comparison with the intensity of the Auger signal originating from the un…
NanoESCA: imaging UPS and XPS with high energy resolution
Abstract A novel imaging electron spectrometer has been used for laterally resolved ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) in the soft X-ray range. The instrument is based on a high-resolution emission microscope optics using a cathode lens and an imaging dispersive analyser. The analyser is corrected for the leading aberration term ( α 2 -term) by means of two hemispherical analysers in antisymmetric configuration with an appropriate transfer lens. Small-area spectra as well as energy-filtered images have been taken in the soft X-ray range for a meteorite sample and in the range of the d-band of a Cu polycrystal. An energy resolution of 106 …
Spin Polarimetry and Magnetic Dichroism on a Buried Magnetic Layer Using Hard X-ray Photoelectron Spectroscopy
The spin-resolved electronic structure of buried magnetic layers is studied by hard X-ray photoelectron spectroscopy (HAXPES) using a spin polarimeter in combination with a high-energy hemispherical electron analyzer at the high-brilliance BL47XU beamline (SPring-8, Japan). Spin-resolved photoelectron spectra are analyzed in comparison with the results of magnetic linear and circular dichroism in photoelectron emission in the case of buried Co2FeAl0.5Si0.5 layers. The relatively large inelastic mean free path (up to 20 nm) of fast photoelectrons enables us to extend the HAXPES technique with electron-spin polarimetry and to develop spin analysis techniques for buried magnetic multilayers a…
Nondestructive full-field imaging XANES-PEEM analysis of cosmic grains
For chemical analysis of submicron particles, mass spectrometric methods have the disadvantage of being destructive. Thus, a nondestructive elemental and chemical mapping with a high spatial resolution prior to mass analysis is extremely valuable to precharacterize the sample. Here, first results are presented of combined XANES (x-ray absorption near-edge structure) and PEEM (photoemission electron microscopy) measurements on a cosmic grain fraction from the Murchison meteorite. This nondestructive full-field imaging method is well suited for a quantitative analysis and for a preselection prior to detailed mass spectrometric investigations with isotopic resolution/selectivity. A spectral un…
Trace element analysis in pre-solar stardust grains via full-field imaging XPS (Nano-ESCA)
An acid-resistant, SiC-rich, residue from the Murchison meteorite was investigated by means of a novel imaging XPS instrument. The micrometer-sized grains were deposited on a Si wafer from an aqueous suspension. Energy filtered ESCA images have been taken in the kinetic energy range from the threshold up to about 400 eV for various photon energies. A lateral resolution of the order of 120 nm along with a high energy resolution in the range of 100 meV provides the basis for chemical trace element analysis with maximum sensitivity. Apart from major (Si, C) and minor (N, Mg, Al, Fe) elements, the energy filtered images and local microspectra revealed the presence of a variety of heavy trace el…