0000000000268738

AUTHOR

Hasibur Rahaman

Dual Hydrogen Bond - Enamine Catalysis Enables a Direct Enantioselective Three-Component Domino Reaction

A dual system, composed of an enantioselective enamine catalyst and a multiple-hydrogen-bond catalyst achieves the three-component enantioselective aldehyde—nitroalkene—aldehyde domino reaction using either two similar or two different aldehydes.

research product

ChemInform Abstract: Dual Hydrogen-Bond/Enamine Catalysis Enables a Direct Enantioselective Three-Component Domino Reaction.

A dual system, composed of an enantioselective enamine catalyst and a multiple-hydrogen-bond catalyst achieves the three-component enantioselective aldehyde—nitroalkene—aldehyde domino reaction using either two similar or two different aldehydes.

research product

Bifunctional Acid-Base Catalysis

Acid-base catalysis with bifunctional catalysts is a very prominent catalytic strategy in both small-molecule organocatalysts as well as enzyme catalysis. In both worlds, small-molecule catalysts and enzymatic catalysis, a variety of different general acids or hydrogen bond donors are used. In this chapter, important parallels between small molecule catalysts and enzymes are discussed, and a comparison is also made to the emerging field of frustrated Lewis pair catalysis.

research product

Dihydrooxazine Oxides as Key Intermediates in Organocatalytic Michael Additions of Aldehydes to Nitroalkenes

Pause and play: dihydrooxazine oxides are stable intermediates that are protonated directly, without the intermediacy of the zwitterions, in organocatalytic Michael additions of aldehydes and nitroalkenes (see scheme, R=alkyl). Protonation of these species explains both the role of the acid co-catalyst in these reactions, and the observed stereochemistry when the reaction is conducted with α-alkylnitroalkenes.

research product

ChemInform Abstract: Dihydrooxazine Oxides as Key Intermediates in Organocatalytic Michael Additions of Aldehydes to Nitroalkenes.

Pause and play: dihydrooxazine oxides are stable intermediates that are protonated directly, without the intermediacy of the zwitterions, in organocatalytic Michael additions of aldehydes and nitroalkenes (see scheme, R=alkyl). Protonation of these species explains both the role of the acid co-catalyst in these reactions, and the observed stereochemistry when the reaction is conducted with α-alkylnitroalkenes.

research product