0000000000274300
AUTHOR
Christian Berger
Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila.
Development of the central nervous system (CNS) involves the transformation of a two-dimensional epithelial sheet of uniform ectodermal cells, the neuroectoderm, into a highly complex three-dimensional structure consisting of a huge variety of different neural cell types. Characteristic numbers of each cell type become arranged in reproducible spatial patterns, which is a prerequisite for the establishment of specific functional contacts. The fruitfly Drosophila is a suitable model to approach the mechanisms controlling the generation of cell diversity and pattern in the developing CNS, as it allows linking of gene function to individually identifiable cells. This review addresses aspects o…
What should i do and who's to blame?
The COVID-19 crisis has had a major impact on youth. This study examined factors associated with youth’s attitudes towards their government’s response to the pandemic and their blaming of individuals from certain risk groups, ethnic backgrounds, and countries or regions. In a sample of 5,682 young adults (Mage = 22) from 14 countries, lower perceived burden due to COVID-19, more collectivistic and less individualistic values, and more empathy were associated with more positive attitudes towards the government and less blaming of individuals of certain groups. Youth’s social identification with others in the pandemic mediated these associations in the same direction, apart from the COVID-19 …
Neuroprotection and glutamate attenuation by acetylsalicylic acid in temporary but not in permanent cerebral ischemia.
To assess the effects of acetylsalicylic acid (ASA) on glutamate and interleukin-6 (IL-6) release in the striatum of rats suffering from cerebral ischemia, we used the microdialysis technique with probes implanted 2 h prior to stroke onset. A total of 36 rats were randomly assigned to either temporary (90 min, n = 18) or permanent (n = 18) middle cerebral artery occlusion (MCAO). Animals received either a bolus of 40 mg/kg ASA or saline as control 30 min after stroke onset. Permanent MCAO led to large infarct volumes with no differences between treatment with ASA (239.8 ± 4.1 mm3) and saline (230.1 ± 3.9 mm3, p = 0.15). In contrast, ASA therapy in temporary ischemia (87.2 ± 6.2 mm3) reduced…
Spatio-temporal pattern of cells expressing the clock genes period and timeless and the lineages of period expressing neurons in the embryonic CNS of Drosophila melanogaster.
The initial steps towards the generation of cell diversity in the central nervous system of the fruitfly Drosophila melanogaster take place during early phases of embryonic development when a stereotypic population of neural progenitor cells (neuroblasts and midline precursors) is formed in a precise spatial and temporal pattern, and subsequently expresses a particular sequence of genes. The clarification of the positional, temporal and molecular features of the individual progenitor cells in the nerve cord and brain as well as of their specific types of neuronal and/or glial progeny cells forms an essential basis to understand the mechanisms controlling their development. The present study…
Composition of a Neuromere and Its Segmental Diversification under the Control ofHoxGenes in the Embryonic CNS ofDrosophila
Studies performed at the level of single, identified cells in the fruitfly Drosophila have decisively contributed to our understanding of the mechanisms underlying the development and function of the nervous system. This review highlights some of the work based on single-cell analyses in the embryonic/larval CNS that sheds light on the principles underlying formation and organization of an entire segmental unit and its divergence along the anterior/posterior body axis.
A new tetranuclear defective dicubane azide-bridged cobalt(II) complex
Abstract The new tetranuclear cobalt(II) complex with formula [Co4(N3)8(4,5-diazafluoren-9-one)4] (1) is reported. Complex 1 is a cobalt(II) defective dicubane azide-bridged compound showing only azido bridging ligands in the μ1,1– and μ1,1,1– coordination modes. The magnetic properties of 1 are reported. Magnetic susceptibility measurements indicate ferromagnetic coupling. The magnetic data have been fitted to 2 K by considering two different superexchange coupling constants. The out-of-phase signal χM″ displays frequency-dependence below approximately 9 K.
TAF-ChIP: An ultra-low input approach for genome wide chromatin immunoprecipitation assay
Chromatin immunoprecipitation (ChIP) followed by next generation sequencing is an invaluable and powerful technique to understand transcriptional regulation. However, ChIP is currently limited by the requirement of large amount of starting material. This renders studying rare cell populations very challenging, or even impossible. Here, we present a tagmentation-assisted fragmentation ChIP (TAF-ChIP) and sequencing method to generate high-quality datasets from low cell numbers. The method relies on Tn5 transposon activity to fragment the chromatin that is immunoprecipitated, thus circumventing the need for sonication or MNAse digestion to fragment. Furthermore, Tn5 adds the sequencing adapto…
TAF-ChIP: an ultra-low input approach for genome-wide chromatin immunoprecipitation assay
The authors present a novel method for obtaining chromatin profiles from low cell numbers without prior nuclei isolation. The method is successfully implemented in generating epigenetic profile from 100 cells with high signal-to-noise ratio.
A critical role for Cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster
We have examined the process by which cell diversity is generated in neuroblast (NB) lineages in the central nervous system of Drosophila melanogaster. Thoracic NB6-4 (NB6-4t) generates both neurons and glial cells, whereas NB6-4a generates only glial cells in abdominal segments. This is attributed to an asymmetric first division of NB6-4t, localizing prospero (pros) and glial cell missing (gcm) only to the glial precursor cell, and a symmetric division of NB6-4a, where both daughter cells express pros and gcm. Here we show that the NB6-4t lineage represents the ground state, which does not require the input of any homeotic gene, whereas the NB6-4a lineage is specified by the homeotic genes…
Temperature-responsive miRNAs in Drosophila orchestrate adaptation to different ambient temperatures
The majority of Drosophila genes are expressed in a temperature-dependent manner, but the way in which small RNAs may contribute to this effect is completely unknown as we currently lack an idea of how small RNA transcriptomes change as a function of temperature. Applying high-throughput sequencing techniques complemented by quantitative real-time PCR experiments, we demonstrate that altered ambient temperature induces drastic but reversible changes in sequence composition and total abundance of both miRNA and piRNA populations. Further, mRNA sequencing reveals that the expression of miRNAs and their predicted target transcripts correlates inversely, suggesting that temperature-responsive m…
Abdominal-A mediated repression of Cyclin E expression during cell-fate specification in the Drosophila central nervous system
Homeotic/Hox genes are known to specify a given developmental pathway by regulating the expression of downstream effector genes. During embryonic CNS development of Drosophila, the Hox protein Abdominal-A (AbdA) is required for the specification of the abdominal NB6-4 lineage. It does so by down regulating the expression of the cell cycle regulator gene Dcyclin E (CycE). CycE is normally expressed in the thoracic NB6-4 lineage to give rise to mixed lineage of neurons and glia, while only glial cells are produced from the abdominal NB6-4 lineage due to the repression of CycE by AbdA. Here we investigate how AbdA represses the expression of CycE to define the abdominal fate of a single NB6-4 …
Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors.
The central nervous system is composed of segmental units (neuromeres), the size and complexity of which evolved in correspondence to their functional requirements. In Drosophila, neuromeres develop from populations of neural stem cells (neuroblasts) that delaminate from the early embryonic neuroectoderm in a stereotyped spatial and temporal pattern. Pattern units closely resemble the ground state and are rather invariant in thoracic (T1-T3) and anterior abdominal (A1-A7) segments of the embryonic ventral nerve cord. Here, we provide a comprehensive neuroblast map of the terminal abdominal neuromeres A8-A10, which exhibit a progressively derived character. Compared with thoracic and anterio…
The commonly used marker ELAV is transiently expressed in neuroblasts and glial cells in theDrosophilaembryonic CNS
Glial cells in the Drosophila embryonic nervous system can be monitored with the marker Reversed-polarity (Repo), whereas neurons lack Repo and express the RNA-binding protein ELAV (Embryonic Lethal, Abnormal Vision). Since the first description of the ELAV protein distribution in 1991 (Robinow and White), it is believed that ELAV is an exclusive neuronal and postmitotic marker. Looking at ELAV expression, we unexpectedly observed that, in addition to neurons, ELAV is transiently expressed in embryonic glial cells. Furthermore, it is transiently present in the proliferating longitudinal glioblast, and it is transcribed in embryonic neuroblasts. Likewise, elav-Gal4 lines, which are generally…
Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila.
During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to i…
Cyclin E acts under the control of Hox-genes as a cell fate determinant in the developing central nervous system.
The mechanisms controlling the generation of cell diversity in the central nervous system belong to the major unsolved problems in developmental biology. The fly Drosophila melanogaster is a suitable model system to examine these mechanisms at the level of individually identifiable cells. Recently, we have provided evidence that CyclinE--largely independent of its role in cell proliferation--plays a critical role in the specification of neural stem cells (neuroblasts). CycE specifies neuronal fate within neuroblast lineages by acting upstream of glial factors (prospero and glial cell missing), whereby levels of CycE are controlled by homeotic genes, the master control genes regulating segme…
STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation
Summary Adult stem cells reactivate from quiescence to maintain tissue homeostasis and in response to injury. How the underlying regulatory signals are integrated is largely unknown. Drosophila neural stem cells (NSCs) also leave quiescence to generate adult neurons and glia, a process that is dependent on Hippo signaling inhibition and activation of the insulin-like receptor (InR)/PI3K/Akt cascade. We performed a transcriptome analysis of individual quiescent and reactivating NSCs harvested directly from Drosophila brains and identified the conserved STRIPAK complex members mob4, cka, and PP2A (microtubule star, mts). We show that PP2A/Mts phosphatase, with its regulatory subunit Widerbors…
Pravastatin treatment causes a shift in the balance of hippocampal neurotransmitter binding densities towards inhibition
Since pravastatin, a HMG-CoA reductase inhibitor, has recently been shown to reduce infarct volumes and glutamate release in a rat model of ischemic stroke, the aim of the present study was to investigate whether this neuroprotective effect may be due to a modulation of excitatory and inhibitory neurotransmitter receptors. Therefore, Wistar rats were treated six times in 4 days with pravastatin or saline and allowed to survive for 6 hours or 5 days (n=10 per time point and group), respectively. Using quantitative receptor autoradiography, ligand binding densities of [(3)H]MK-801, [(3)H]AMPA, and [(3)H]muscimol for labeling of NMDA, AMPA, and GABA(A) receptors were analyzed in sensorimotor c…
Cell cycle independent role of Cyclin E during neural cell fate specification in Drosophila is mediated by its regulation of Prospero function
AbstractDuring development, neural progenitor cells or neuroblasts generate a great intra- and inter-segmental diversity of neuronal and glial cell types in the nervous system. In thoracic segments of the embryonic central nervous system of Drosophila, the neuroblast NB6-4t undergoes an asymmetric first division to generate a neuronal and a glial sublineage, while abdominal NB6-4a divides once symmetrically to generate only 2 glial cells. We had earlier reported a critical function for the G1 cyclin, CyclinE (CycE) in regulating asymmetric cell division in NB6-4t. Here we show that (i) this function of CycE is independent of its role in cell cycle regulation and (ii) the two functions are m…
Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region
The central nervous system of Drosophila melanogaster consists of fused segmental units (neuromeres), each generated by a characteristic number of neural stem cells (neuroblasts). In the embryo, thoracic and anterior abdominal neuromeres are almost equally sized and formed by repetitive sets of neuroblasts, whereas the terminal abdominal neuromeres are generated by significantly smaller populations of progenitor cells. Here we investigated the role of the Hox gene Abdominal-B in shaping the terminal neuromeres. We show that the regulatory isoform of Abdominal-B (Abd-B.r) not only confers abdominal fate to specific neuroblasts (e.g. NB6-4) and regulates programmed cell death of several proge…
Hippo pathway regulates neural stem cell quiescence.
Stage-specific inductive signals in the Drosophila neuroectoderm control the temporal sequence of neuroblast specification.
One of the initial steps of neurogenesis in the Drosophila embryo is the delamination of a stereotype set of neural progenitor cells (neuroblasts) from the neuroectoderm. The time window of neuroblast segregation has been divided into five successive waves (S1-S5) in which subsets of neuroblasts with specific identities are formed. To test when identity specification of the various neuroblasts takes place and whether extrinsic signals are involved, we have performed heterochronic transplantation experiments. Single neuroectodermal cells from stage 10 donor embryos (after S2) were transplanted into the neuroectoderm of host embryos at stage 7 (before S1) and vice versa. The fate of these cel…