0000000000336760

AUTHOR

Patrick Jung

Asymmetry in the human primary somatosensory cortex and handedness.

Brain asymmetry is a phenomenon well known for handedness and language specialization and has also been studied in motor cortex. Less is known about hemispheric asymmetries in the somatosensory cortex. In the present study, we systematically investigated the representation of somatosensory function analyzing early subcortical and cortical somatosensory-evoked potentials (SEP) after electrical stimulation of the right and left median nerve. In 16 subjects, we compared thresholds, the peripheral neurogram at Erb point, and, using MRI-based EEG source analysis, the P14 brainstem component as well as N20 and P22, the earliest cortical responses from the primary sensorimotor cortex. Handedness w…

research product

Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping

In stimulus-selective stop-signal tasks, the salient stop signal needs attentional processing before genuine response inhibition is completed. Differential prefrontal involvement in attentional capture and response inhibition has been linked to the right inferior frontal junction (IFJ) and ventrolateral prefrontal cortex (VLPFC), respectively. Recently, it has been suggested that stimulus-selective stopping may be accomplished by the following different strategies: individuals may selectively inhibit their response only upon detecting a stop signal (independent discriminate then stop strategy) or unselectively whenever detecting a stop or attentional capture signal (stop then discriminate s…

research product

Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans

Motor inhibitory control implemented as response inhibition is an essential cognitive function required to dynamically adapt to rapidly changing environments. Despite over a decade of research on the neural mechanisms of response inhibition, it remains unclear, how exactly response inhibition is initiated and implemented. Using a multimodal MEG/fMRI approach in 59 subjects, our results reliably reveal that response inhibition is initiated by the right inferior frontal gyrus (rIFG) as a form of attention-independent top-down control that involves the modulation of beta-band activity. Furthermore, stopping performance was predicted by beta-band power, and beta-band connectivity was directed f…

research product

Cortical network mechanisms of response inhibition

SummaryBoth the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (pre-SMA) are crucial for successful response inhibition. However, the particular functional roles of those two regions have been controversially debated for more than a decade now. It is unclear whether the rIFG directly initiates stopping or serves an attentional function, whereas the stopping is triggered by the pre-SMA. The current multimodal MEG/fMRI study sought to clarify the role and temporal activation order of both regions in response inhibition using a selective stopping task. This task dissociates inhibitory from attentional processes. Our results reliably reveal a temporal precedence of rIF…

research product

Author response: Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans

research product

Apolipoprotein A1 in Cerebrospinal Fluid Is Insufficient to Distinguish Alzheimer's Disease from Other Dementias in a Naturalistic, Clinical Setting.

Apolipoprotein A1 (ApoA1) is the major protein component of the high-density lipoprotein and involved in cholesterol transport. Disruption of cholesterol homeostasis has been identified as a contributing factor for Alzheimer's disease (AD). Moreover, polymorphisms of ApoA1 have been associated with higher risk of disease onset and cognitive decline. Therefore, ApoA1 has been suggested as a biomarker in AD. Here, we tested a small cohort of AD and non-AD dementia patients and measured levels of ApoA1 in cerebrospinal fluid. Our results indicate that ApoA1 might not be applicable to distinguish AD from other forms of dementia.

research product

151. Structural and functional asymmetry in human parietal opercular cortex

research product

Surprise: Unexpected Action Execution and Unexpected Inhibition Recruit the Same Fronto-Basal-Ganglia Network.

Unexpected and thus surprising events are omnipresent and oftentimes require adaptive behavior such as unexpected inhibition or unexpected action. The current theory of unexpected events suggests that such unexpected events just like global stopping recruit a fronto-basal-ganglia network. A global suppressive effect impacting ongoing motor responses and cognition is specifically attributed to the subthalamic nucleus (STN). Previous studies either used separate tasks or presented unexpected, task-unrelated stimuli during response inhibition tasks to relate the neural signature of unexpected events to that of stopping. Here, we aimed to test these predictions using a within task design with i…

research product