0000000000350302
AUTHOR
Stefanie Pektor
PSA and PSA Kinetics Thresholds for the Presence of 68Ga-PSMA-11 PET/CT-Detectable Lesions in Patients with Biochemical Recurrent Prostate Cancer
68Ga-PSMA-11 positron-emission tomography/computed tomography (PET/CT) is commonly used for restaging recurrent prostate cancer (PC) in European clinical practice. The goal of this study is to determine the optimum time for performing these PET/CT scans in a large cohort of patients by identifying the prostate-specific-antigen (PSA) and PSA kinetics thresholds for detecting and localizing recurrent PC. This retrospective analysis includes 581 patients with biochemical recurrence (BC) by definition. The performance of 68Ga-PSMA-11 PET/CT in relation to the PSA value at the scan time as well as PSA kinetics was assessed by the receiver-operating-characteristic-curve (ROC) generated by plottin…
In vivo Evaluation of [225Ac]Ac-DOTAZOL for α-Therapy of Bone Metastases
Background Conjugates of bisphosphonates with macrocyclic chelators possess high potential in bone targeted radionuclide imaging and therapy. DOTAZOL, zoledronic acid conjugated to DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), demonstrated promising results in vivo in small animals as well as in first patient applications using 68Ga for diagnosis via PET and the lowenergy β-emitter 177Lu for therapy of painful bone metastases. In consideration of the fact that targeted α-therapy probably offers various advantages over the use of β--emitters, the 225Ac-labelled derivative [225Ac]Ac-DOTAZOL was synthesized and evaluated in vivo. Here, we report on radiolabelling and biodist…
Fate of Linear and Branched Polyether-Lipids In Vivo in Comparison to Their Liposomal Formulations by 18F-Radiolabeling and Positron Emission Tomography
In this study, linear poly(ethylene glycol) (PEG) and novel linear-hyperbranched, amphiphilic polyglycerol (hbPG) polymers with cholesterol (Ch) as a lipid anchor moiety were radiolabeled with fluorine-18 via copper-catalyzed click chemistry. In vivo investigations via positron emission tomography (PET) and ex vivo biodistribution in mice were conducted. A systematic comparison to the liposomal formulations with and without the polymers with respect to their initial pharmacokinetic properties during the first hour was carried out, revealing remarkable differences. Additionally, cholesterol was directly labeled with fluorine-18 and examined likewise. Both polymers, Ch-PEG27-CH2-triazole-TEG-…
Comparison Study of Two Differently Clicked 18F-Folates—Lipophilicity Plays a Key Role
Within the last decade, several folate-based radiopharmaceuticals for Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been evaluated; however, there is still a lack of suitable 18F-folates for clinical PET imaging. Herein, we report the synthesis and evaluation of two novel 18F-folates employing strain-promoted and copper-catalyzed click chemistry. Furthermore, the influence of both click-methods on lipophilicity and pharmacokinetics of the 18F-folates was investigated. 18F-Ala-folate and 18F-DBCO-folate were both stable in human serum albumin. In vitro studies proved their high affinity to the folate receptor (FR). The lipophilic character of …
A trifunctional dextran-based nanovaccine targets and activates murine dendritic cells, and induces potent cellular and humoral immune responses in vivo.
Dendritic cells (DCs) constitute an attractive target for specific delivery of nanovaccines for immunotherapeutic applications. Here we tested nano-sized dextran (DEX) particles to serve as a DC-addressing nanocarrier platform. Non-functionalized DEX particles had no immunomodulatory effect on bone marrow (BM)-derived murine DCs in vitro. However, when adsorbed with ovalbumine (OVA), DEX particles were efficiently engulfed by BM-DCs in a mannose receptor-dependent manner. A DEX-based nanovaccine containing OVA and lipopolysaccharide (LPS) as a DC stimulus induced strong OVA peptide-specific CD4(+) and CD8(+) T cell proliferation both in vitro and upon systemic application in mice, as well a…
Highly Loaded Semipermeable Nanocapsules for Magnetic Resonance Imaging.
Magnetic resonance imaging has become an essential tool in medicine for the investigation of physiological processes. The key issues related to contrast agents, i.e., substances that are injected in the body for imaging, are the efficient enhancement of contrast, their low toxicity, and their defined biodistribution. Polyurea nanocapsules containing the gadolinium complex Gadobutrol as a contrast agent in high local concentration and high relaxivity up to 40 s-1 mmol-1 L are described. A high concentration of the contrast agent inside the nanocapsules can be ensured by increasing the crystallinity in the shell of the nanocapsules. Nanocapsules from aliphatic polyurea are found to display hi…
Whole-body biodistribution of the cannabinoid type 1 receptor ligand [ 18 F]MK-9470 in the rat
The endocannabinoid system participates in many processes in the body, including memory, reward, pain, motor activity, food intake, energy metabolism, and gastrointestinal functions. [18F]MK-9470 is a positron emission tomography (PET) ligand that binds with high affinity and selectivity to the cannabinoid type 1 receptor. In order to fully characterize ligand behavior, tracer uptake measured using in vivo microPET was compared with results from ex vivo tissue dissection. Twelve male Sprague-Dawley rats were divided into three subgroups and scanned over time periods of 10min, 30min and 90min using PET. Afterwards, a number of the animals' organs were dissected. Uptake of radioactivity was e…
Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging.
Background In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177. Results Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High sta…
Targeting of immune cells with trimannosylated liposomes
Evaluation of a novel monoclonal antibody against tumor-associated MUC1 for diagnosis and prognosis of breast cancer
There is still a great unmet medical need concerning diagnosis and treatment of breast cancer which could be addressed by utilizing specific molecular targets. Tumor-associated MUC1 is expressed on over 90 % of all breast cancer entities and differs strongly from its physiological form on epithelial cells, therefore presenting a unique target for breast cancer diagnosis and antibody-mediated immune therapy. Utilizing an anti-tumor vaccine based on a synthetically prepared glycopeptide, we generated a monoclonal antibody (mAb) GGSK-1/30, selectively recognizing human tumor-associated MUC1. This antibody targets exclusively tumor-associated MUC1 in the absence of any binding to MUC1 on health…
Toll like receptor mediated immune stimulation can be visualized in vivo by [ 18 F]FDG-PET
Abstract Introduction High uptake of [ 18 F]-2-fluorodeoxyglucose ([ 18 F]FDG) by inflammatory cells is a frequent cause of false positive results in [ 18 F]FDG-positron-emission tomography (PET) for cancer diagnostics. Similar to cancer cells, immune cells undergo significant increases in glucose utilization following activation, e.g., in infectious diseases or after vaccination during cancer therapy. The aim of this study was to quantify certain immune effects in vitro and in vivo by [ 18 F]FDG-PET after stimulation with TLR ligands and specific antibodies. Methods In vivo [ 18 F]FDG-PET/magnetic resonance imaging (MRI) and biodistribution was performed with C57BL/6 mice immunized with Cp…
Hybrid Chelator-Based PSMA Radiopharmaceuticals: Translational Approach
(1) Background: Prostate-specific membrane antigen (PSMA) has been extensively studied in the last decade. It became a promising biological target in the diagnosis and therapy of PSMA-expressing cancer diseases. Although there are several radiolabeled PSMA inhibitors available, the search for new compounds with improved pharmacokinetic properties and simplified synthesis is still ongoing. In this study, we developed PSMA ligands with two different hybrid chelators and a modified linker. Both compounds have displayed a promising pharmacokinetic profile. (2) Methods: DATA5m.SA.KuE and AAZTA5.SA.KuE were synthesized. DATA5m.SA.KuE was labeled with gallium-68 and radiochemical yields of various…
Evaluation of the inverse electron demand Diels-Alder reaction in rats using a scandium-44-labelled tetrazine for pretargeted PET imaging
Background Pretargeted imaging allows the use of short-lived radionuclides when imaging the accumulation of slow clearing targeting agents such as antibodies. The biotin-(strept)avidin and the bispecific antibody-hapten interactions have been applied in clinical pretargeting studies; unfortunately, these systems led to immunogenic responses in patients. The inverse electron demand Diels-Alder (IEDDA) reaction between a radiolabelled tetrazine (Tz) and a trans-cyclooctene (TCO)-functionalized targeting vector is a promising alternative for clinical pretargeted imaging due to its fast reaction kinetics. This strategy was first applied in nuclear medicine using an 111In-labelled Tz to image TC…
Harnessing the potential of noninvasive in vivo preclinical imaging of the immune system: challenges and prospects.
Preclinical imaging has become a powerful method for investigation of in vivo processes such as pharmacokinetics of therapeutic substances and visualization of physiologic and pathophysiological mechanisms. These are important aspects to understand diseases and develop strategies to modify their progression with pharmacologic interventions. One promising intervention is the application of specifically tailored nanoscale particles that modulate the immune system to generate a tumor targeting immune response. In this complex interaction between immunomodulatory therapies, the immune system and malignant disease, imaging methods are expected to play a key role on the way to generate new thera…
Additional file 1: of Evaluation of the inverse electron demand Diels-Alder reaction in rats using a scandium-44-labelled tetrazine for pretargeted PET imaging
Figure S1. HPLC radiochromatogram chromatogram of [44Sc]3 (Rt = 5.7 min). Figure S2. In vitro stability of [44Sc]3. (A) radio-TLC analysis of [44Sc]3 with 2 (lane 2) and without 2 (lane 1) following radiosynthesis. (B) Percent intact over time after incubation in saline (red circles) and human serum albumin (blue squares) for 0.5–24 h at 37 °C. Table S1. Summary of the uptake for [44Sc]3 in Wistar rats. Table S2. Summary of bone uptake values (4 h p.i.) and TCO:Tz ratios in individual rats. (DOC 275 kb)
Comparison of linear and hyperbranched polyether lipids for liposome shielding by 18F-radiolabeling and positron emission tomography
Multifunctional and highly biocompatible polyether structures play a key role in shielding liposomes from degradation in the bloodstream, providing also multiple functional groups for further attachment of targeting moieties. In this work hyperbranched polyglycerol (hbPG) bearing lipids with long alkyl chain anchor are evaluated with respect to steric stabilization of liposomes. The branched polyether lipids possess a hydrophobic bis(hexadecyl)glycerol membrane anchor for the liposomal membrane. hbPG was chosen as a multifunctional alternative to PEG, enabling the eventual linkage of multiple targeting vectors. Different hbPG lipids (Mn = 2900 and 5200 g mol-1) were examined. A linear bis(h…