0000000000383067

AUTHOR

A. Pirojenko

showing 6 related works from this author

Particle detectors made of high-resistivity Czochralski silicon

2005

We have processed pin-diodes and strip detectors on n- and p-type high-resistivity silicon wafers grown by magnetic Czochralski method. The Czochralski silicon (Cz-Si) wafers manufactured by Okmetic Oyj have nominal resistivity of 900 O cm and 1.9 kO cm for n- and p-type, respectively. The oxygen concentration in these substrates is slightly less than typically in wafers used for integrated circuit fabrication. This is optimal for semiconductor fabrication as well as for radiation hardness. The radiation hardness of devices has been investigated with several irradiation campaigns including low- and high-energy protons, neutrons, g-rays, lithium ions and electrons. Cz-Si was found to be more…

PhysicsNuclear and High Energy PhysicsSiliconbusiness.industrychemistry.chemical_elementFloat-zone siliconRadiationFluencechemistryElectrical resistivity and conductivityOptoelectronicsWaferIrradiationbusinessInstrumentationRadiation hardeningNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Experimental Linear Energy Transfer of Heavy Ions in Silicon for RADEF Cocktail Species

2009

Experimental linear energy transfer values of heavy ions in silicon are presented with comparison to estimations from different semi empirical codes widely used among the community. This paper completes the experimental LET data for the RADEF cocktail ions in silicon.

PhysicsNuclear and High Energy PhysicsSiliconLinear energy transferchemistry.chemical_elementProbability density functionIonNuclear physicsTime of flightNuclear Energy and EngineeringIon acceleratorschemistryElectrical and Electronic EngineeringAtomic physicsNuclear ExperimentIEEE Transactions on Nuclear Science
researchProduct

Radiation hardness of Czochralski silicon, Float Zone silicon and oxygenated Float Zone silicon studied by low energy protons

2004

Abstract We processed pin-diodes on Czochralski silicon (Cz-Si), standard Float Zone silicon (Fz-Si) and oxygenated Fz-Si. The diodes were irradiated with 10, 20, and 30 MeV protons. Depletion voltages and leakage currents were measured as a function of the irradiation dose. Additionally, the samples were characterized by TCT and DLTS methods. The high-resistivity Cz-Si was found to be more radiation hard than the other studied materials.

PhysicsNuclear and High Energy PhysicsSiliconAnalytical chemistrychemistry.chemical_elementFloat-zone siliconRadiationLow energychemistryIrradiationInstrumentationRadiation hardeningLeakage (electronics)DiodeNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The effect of oxygenation on the radiation hardness of silicon studied by surface photovoltage method

2002

The effect of oxygenation on the radiation hardness of silicon detectors was studied. Oxygen-enriched and standard float-zone silicon pin-diodes and oxidized samples were processed and irradiated with 15-MeV protons. After the irradiations, the surface photovoltage (SPV) method was applied to extract minority carrier diffusion lengths of the silicon samples. Adding oxygen to silicon was found to improve the radiation hardness of silicon. The effect was visible in minority carrier diffusion lengths as well as in reverse bias leakage currents. The suitability of SPV method for characterizing irradiated silicon samples was proved.

inorganic chemicalsNuclear and High Energy PhysicsMaterials scienceSiliconPhysics::Instrumentation and Detectorsbusiness.industrySurface photovoltageDetectortechnology industry and agriculturechemistry.chemical_elementCarrier lifetimeequipment and suppliescomplex mixturesOxygenstomatognathic diseasesNuclear Energy and EngineeringchemistryOptoelectronicsIrradiationElectrical and Electronic EngineeringbusinessRadiation hardeningLeakage (electronics)IEEE Transactions on Nuclear Science
researchProduct

Utilisation of a sputtering device for targetry and diffusion studies

2004

A novel device for versatile sputtering applications is described. The apparatus design is realised for fulfilling the demands of both nuclear physics experiment target production and serial sectioning in solid-state diffusion studies with radiotracers. Results of several tests are reported, characterising the devise performance in these two differing applications.

Nuclear and High Energy PhysicsFabricationMaterials scienceSputtering0103 physical sciencesNanotechnology02 engineering and technologyDiffusion (business)021001 nanoscience & nanotechnology010306 general physics0210 nano-technology01 natural sciencesInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Annealing study of oxygenated and non-oxygenated float zone silicon irradiated with protons

2003

Abstract Introducing oxygen into the silicon material is believed to improve the radiation hardness of silicon detectors. In this study, oxygenated and non-oxygenated silicon samples were processed and irradiated with 15 MeV protons. In order to speed up the defect reactions after the exposure to particle radiation, the samples were heat treated at elevated temperatures. In this way, the long-term stability of silicon detectors in hostile radiation environment could be estimated. Current–voltage measurements and Surface Photovoltage (SPV) method were used to characterize the samples.

inorganic chemicalsPhysicsNuclear and High Energy PhysicsSiliconPhysics::Instrumentation and Detectorsbusiness.industryAnnealing (metallurgy)Surface photovoltagetechnology industry and agricultureAnalytical chemistrychemistry.chemical_elementRadiationFloat-zone siliconequipment and suppliescomplex mixtureschemistryOptoelectronicsIrradiationParticle radiationbusinessInstrumentationRadiation hardeningNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct