0000000000388477
AUTHOR
Antonietta Gatti
Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation.
Recent studies give support for a connection between the presence of inorganic particles (of microm and nm size) in different organs and tissues and the development of inflammatory foci, called granulomas. As the potential source of particles (e.g. porcelain dental bridges) and the location of particle detection were topographically far apart, a distribution via the blood stream appears highly probable. Thus, endothelial cells, which line the inner surface of blood vessels, would come into direct contact with these particles, making particle-endothelial interactions potentially pathogenically relevant. The objective of this study was to evaluate the effects that five different nano-scaled p…
Impact of Ceramic and Metallic Nano-scaled Particles on Endothelial Cell Functionsin vitro
The sections in this article are Introduction Origin of Particles in the Human Environment Evidence for Size-dependent Toxicity of Particles Dissemination and Interferences of Nanoparticles within the Body Endothelial Cells and Nanoparticle Exposure Testing of Nanoparticle-induced Effects on Human Endothelial Cells In Vitro Materials and Methods Cell Culture Particles Transmission Electron Microscopy (TEM) Cytotoxicity Assay Detection of Ki67 Expression Quantification of IL-8 Release in Cell Culture Supernatant Quantification of E-selectin Cell Surface Protein Expression Fluorescence Staining Statistical Analysis Results Discussion Particle Internalization Particle Cytotoxicity Pro-inflamma…
Soil microbial biomass carbon and fatty acid composition of earthworm Lumbricus rubellus after exposure to engineered nanoparticles
none 6 no First Online: 14 October 2014 The aim of this work was to investigate the effect of engineered nanoparticles (NPs) on soil microbial biomass C (MBC) and on earthworm Lumbricus rubellus. An artificial soil was incubated for 4 weeks with earthworms fed with vegetable residues contaminated by NPs, consisting of Ag, Co, Ni and TiO2. After the treatments, soils were analysed for MBC and total and water soluble metal-NPs, whereas earthworms were purged for 28 days and then analysed for fatty acids (FAs) and total metal-NPs. Longitudinal sections of earthworms were investigated by environmental scanning electron microscopy (ESEM), equipped with energy-dispersive X-ray spectroscopy (EDS),…
Biological tolerance of different materials in bulk and nanoparticulate form in a rat model: sarcoma development by nanoparticles
In order to study the pathobiological impact of the nanometre-scale of materials, we evaluated the effects of five different materials as nanoparticulate biomaterials in comparison with bulk samples in contact with living tissues. Five groups out of 10 rats were implanted bilaterally for up to 12 months with materials of the same type, namely TiO 2 , SiO 2 , Ni, Co and polyvinyl chloride (PVC), subcutaneously with bulk material on one side of the vertebral column and intramuscularly with nanoparticulate material on the contralateral side. At the end of each implantation time, the site was macroscopically examined, followed by histological processing according to standard techniques. Malign…
Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro
Particulate matter is associated with different human diseases affecting organs such as the respiratory and cardiovascular systems. Very small particles (nanoparticles) have been shown to be rapidly internalized into the body. Since the sites of internalization and the location of the detected particles are often far apart, a distribution via the blood stream must have occurred. Thus, endothelial cells, which line the inner surface of blood vessels, must have had direct contact with the particles. In this study we tested the effects of metallic nanoparticles (Co and Ni) on oxidative stress and proinflammatory response in human endothelial cells in vitro. Exposure to both nanoparticle types…
Effect of cobalt and silver nanoparticles and ions on Lumbricus rubellus health and on microbial community of earthworm faeces and soil
The aim of this study was to investigate the impact of silver and cobalt, supplied both as ions and nanoparticles (Ag+, Co2+, AgNPs, CoNPs) through contaminated food to earthworms (Lumbricus rubellus), on their health as well as on microbial community of both soil and earthworm faeces. Earthworms and microbes were exposed to the contaminants in laboratory microcosms with artificial soil. Contaminants were supplied once a week for 5 weeks by spiking them on horse manure. The accumulation of CoNPs and Co2+ in earthworm tissues was two and three times greater than AgNPs and Ag+, respectively. Except for AgNPs, contaminants significantly affected microbial community structure of earthworm faece…