0000000000397240

AUTHOR

Katrin Fässler

Singular integrals on regular curves in the Heisenberg group

Let $\mathbb{H}$ be the first Heisenberg group, and let $k \in C^{\infty}(\mathbb{H} \, \setminus \, \{0\})$ be a kernel which is either odd or horizontally odd, and satisfies $$|\nabla_{\mathbb{H}}^{n}k(p)| \leq C_{n}\|p\|^{-1 - n}, \qquad p \in \mathbb{H} \, \setminus \, \{0\}, \, n \geq 0.$$ The simplest examples include certain Riesz-type kernels first considered by Chousionis and Mattila, and the horizontally odd kernel $k(p) = \nabla_{\mathbb{H}} \log \|p\|$. We prove that convolution with $k$, as above, yields an $L^{2}$-bounded operator on regular curves in $\mathbb{H}$. This extends a theorem of G. David to the Heisenberg group. As a corollary of our main result, we infer that all …

research product

Riesz transform and vertical oscillation in the Heisenberg group

We study the $L^{2}$-boundedness of the $3$-dimensional (Heisenberg) Riesz transform on intrinsic Lipschitz graphs in the first Heisenberg group $\mathbb{H}$. Inspired by the notion of vertical perimeter, recently defined and studied by Lafforgue, Naor, and Young, we first introduce new scale and translation invariant coefficients $\operatorname{osc}_{\Omega}(B(q,r))$. These coefficients quantify the vertical oscillation of a domain $\Omega \subset \mathbb{H}$ around a point $q \in \partial \Omega$, at scale $r > 0$. We then proceed to show that if $\Omega$ is a domain bounded by an intrinsic Lipschitz graph $\Gamma$, and $$\int_{0}^{\infty} \operatorname{osc}_{\Omega}(B(q,r)) \, \frac{dr}{…

research product

Intrinsic Lipschitz Graphs and Vertical β-Numbers in the Heisenberg Group

The purpose of this paper is to introduce and study some basic concepts of quantitative rectifiability in the first Heisenberg group $\mathbb{H}$. In particular, we aim to demonstrate that new phenomena arise compared to the Euclidean theory, founded by G. David and S. Semmes in the 90's. The theory in $\mathbb{H}$ has an apparent connection to certain nonlinear PDEs, which do not play a role with similar questions in $\mathbb{R}^{3}$. Our main object of study are the intrinsic Lipschitz graphs in $\mathbb{H}$, introduced by B. Franchi, R. Serapioni and F. Serra Cassano in 2006. We claim that these $3$-dimensional sets in $\mathbb{H}$, if any, deserve to be called quantitatively $3$-rectifi…

research product

Loomis-Whitney inequalities in Heisenberg groups

This note concerns Loomis-Whitney inequalities in Heisenberg groups $\mathbb{H}^n$: $$|K| \lesssim \prod_{j=1}^{2n}|\pi_j(K)|^{\frac{n+1}{n(2n+1)}}, \qquad K \subset \mathbb{H}^n.$$ Here $\pi_{j}$, $j=1,\ldots,2n$, are the vertical Heisenberg projections to the hyperplanes $\{x_j=0\}$, respectively, and $|\cdot|$ refers to a natural Haar measure on either $\mathbb{H}^n$, or one of the hyperplanes. The Loomis-Whitney inequality in the first Heisenberg group $\mathbb{H}^1$ is a direct consequence of known $L^p$ improving properties of the standard Radon transform in $\mathbb{R}^2$. In this note, we show how the Loomis-Whitney inequalities in higher dimensional Heisenberg groups can be deduced…

research product

Dorronsoro's theorem in Heisenberg groups

A theorem of Dorronsoro from the 1980s quantifies the fact that real-valued Sobolev functions on Euclidean spaces can be approximated by affine functions almost everywhere, and at all sufficiently small scales. We prove a variant of Dorronsoro's theorem in Heisenberg groups: functions in horizontal Sobolev spaces can be approximated by affine functions which are independent of the last variable. As an application, we deduce new proofs for certain vertical vs. horizontal Poincare inequalities for real-valued functions on the Heisenberg group, originally due to Austin-Naor-Tessera and Lafforgue-Naor.

research product

Hardy spaces and quasiconformal maps in the Heisenberg group

We define Hardy spaces $H^p$, $00$ such that every $K$-quasiconformal map $f:B \to f(B) \subset \mathbb{H}^1$ belongs to $H^p$ for all $0<p<p_0(K)$. Second, we give two equivalent conditions for the $H^p$ membership of a quasiconformal map $f$, one in terms of the radial limits of $f$, and one using a nontangential maximal function of $f$. As an application, we characterize Carleson measures on $B$ via integral inequalities for quasiconformal mappings on $B$ and their radial limits. Our paper thus extends results by Astala and Koskela, Jerison and Weitsman, Nolder, and Zinsmeister, from $\mathbb{R}^n$ to $\mathbb{H}^1$. A crucial difference between the proofs in $\mathbb{R}^n$ and $\mathbb{…

research product

Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups

This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, in the Heisenberg group $\mathbb{H}^n$, $n\in \mathbb{N}$. For $1\leq k\leq n$, we show that every intrinsic $L$-Lipschitz graph over a subset of a $k$-dimensional horizontal subgroup $\mathbb{V}$ of $\mathbb{H}^n$ can be extended to an intrinsic $L'$-Lipschitz graph over the entire subgroup $\mathbb{V}$, where $L'$ depends only on $L$, $k$, and $n$. We further prove that $1$-dimensional intrinsic $1$-Lipschitz graphs in $\mathbb{H}^n$, $n\in \mathbb{N}$, admit corona decompositions by intrinsic Lipschitz graphs with smaller Lipschitz constants. This complements results that…

research product

Heisenberg quasiregular ellipticity

Following the Euclidean results of Varopoulos and Pankka--Rajala, we provide a necessary topological condition for a sub-Riemannian 3-manifold $M$ to admit a nonconstant quasiregular mapping from the sub-Riemannian Heisenberg group $\mathbb{H}$. As an application, we show that a link complement $S^3\backslash L$ has a sub-Riemannian metric admitting such a mapping only if $L$ is empty, the unknot or Hopf link. In the converse direction, if $L$ is empty, a specific unknot or Hopf link, we construct a quasiregular mapping from $\mathbb{H}$ to $S^3\backslash L$. The main result is obtained by translating a growth condition on $\pi_1(M)$ into the existence of a supersolution to the $4$-harmonic…

research product

Semmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group

A Semmes surface in the Heisenberg group is a closed set $S$ that is upper Ahlfors-regular with codimension one and satisfies the following condition, referred to as Condition B. Every ball $B(x,r)$ with $x \in S$ and $0 &lt; r &lt; \operatorname{diam} S$ contains two balls with radii comparable to $r$ which are contained in different connected components of the complement of $S$. Analogous sets in Euclidean spaces were introduced by Semmes in the late $80$'s. We prove that Semmes surfaces in the Heisenberg group are lower Ahlfors-regular with codimension one and have big pieces of intrinsic Lipschitz graphs. In particular, our result applies to the boundary of chord-arc domains and of redu…

research product

Metric Rectifiability of ℍ-regular Surfaces with Hölder Continuous Horizontal Normal

Abstract Two definitions for the rectifiability of hypersurfaces in Heisenberg groups $\mathbb{H}^n$ have been proposed: one based on ${\mathbb{H}}$-regular surfaces and the other on Lipschitz images of subsets of codimension-$1$ vertical subgroups. The equivalence between these notions remains an open problem. Recent partial results are due to Cole–Pauls, Bigolin–Vittone, and Antonelli–Le Donne. This paper makes progress in one direction: the metric Lipschitz rectifiability of ${\mathbb{H}}$-regular surfaces. We prove that ${\mathbb{H}}$-regular surfaces in $\mathbb{H}^{n}$ with $\alpha $-Hölder continuous horizontal normal, $\alpha&amp;gt; 0$, are metric bilipschitz rectifiable. This impr…

research product

A note on Kakeya sets of horizontal and SL(2) lines

We consider unions of $SL(2)$ lines in $\mathbb{R}^{3}$. These are lines of the form $$L = (a,b,0) + \mathrm{span}(c,d,1),$$ where $ad - bc = 1$. We show that if $\mathcal{L}$ is a Kakeya set of $SL(2)$ lines, then the union $\cup \mathcal{L}$ has Hausdorff dimension $3$. This answers a question of Wang and Zahl. The $SL(2)$ lines can be identified with horizontal lines in the first Heisenberg group, and we obtain the main result as a corollary of a more general statement concerning unions of horizontal lines. This statement is established via a point-line duality principle between horizontal and conical lines in $\mathbb{R}^{3}$, combined with recent work on restricted families of projecti…

research product

Metric Rectifiability of H-regular Surfaces with Hölder Continuous Horizontal Normal

Two definitions for the rectifiability of hypersurfaces in Heisenberg groups Hn have been proposed: one based on H-regular surfaces and the other on Lipschitz images of subsets of codimension-1 vertical subgroups. The equivalence between these notions remains an open problem. Recent partial results are due to Cole–Pauls, Bigolin–Vittone, and Antonelli–Le Donne. This paper makes progress in one direction: the metric Lipschitz rectifiability of H-regular surfaces. We prove that H-regular surfaces in Hn with α-Hölder continuous horizontal normal, α>0⁠, are metric bilipschitz rectifiable. This improves on the work by Antonelli–Le Donne, where the same conclusion was obtained for C∞-surfaces. In…

research product

Vertical versus horizontal Sobolev spaces

Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev sp…

research product

Nonexistence of Quasiconformal Maps Between Certain Metric Measure Spaces

We provide new conditions that ensure that two metric measure spaces are not quasiconformally equivalent. As an application, we deduce that there exists no quasiconformal map between the sub-Riemannian Heisenberg and roto-translation groups.

research product

On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups.

AbstractThis note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give a review of the complete classification of such groups up to quasi-isometries and we compare the quasi-isometric classification with the bi-Lipschitz classification. On the other hand, we study the problem whether two quasi-isometrically equivalent Lie groups may be made isometric if equipped with suitable left-invariant Riemannian metrics. We show that this is the case for three-dimensional simply connected groups, but it is not true in general for multiply connec…

research product

Curve packing and modulus estimates

A family of planar curves is called a Moser family if it contains an isometric copy of every rectifiable curve in $\mathbb{R}^{2}$ of length one. The classical "worm problem" of L. Moser from 1966 asks for the least area covered by the curves in any Moser family. In 1979, J. M. Marstrand proved that the answer is not zero: the union of curves in a Moser family has always area at least $c$ for some small absolute constant $c &gt; 0$. We strengthen Marstrand's result by showing that for $p &gt; 3$, the $p$-modulus of a Moser family of curves is at least $c_{p} &gt; 0$.

research product