0000000000408391

AUTHOR

Norbert Benecke

Tracing the first steps of American sturgeon pioneers in Europe

Abstract Background A Baltic population of Atlantic sturgeon was founded ~1,200 years ago by migrants from North America, but after centuries of persistence, the population was extirpated in the 1960s, mainly as a result of over-harvest and habitat alterations. As there are four genetically distinct groups of Atlantic sturgeon inhabiting North American rivers today, we investigated the genetic provenance of the historic Baltic population by ancient DNA analyses using mitochondrial and nuclear markers. Results The phylogeographic signal obtained from multilocus microsatellite DNA genotypes and mitochondrial DNA control region haplotypes, when compared to existing baseline datasets from extan…

research product

Correction for Frantz et al., Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe

Significance Archaeological evidence indicates that domestic pigs arrived in Europe, alongside farmers from the Near East ∼8,500 y ago, yet mitochondrial genomes of modern European pigs are derived from European wild boars. To address this conundrum, we obtained mitochondrial and nuclear data from modern and ancient Near Eastern and European pigs. Our analyses indicate that, aside from a coat color gene, most Near Eastern ancestry in the genomes of European domestic pigs disappeared over 3,000 y as a result of interbreeding with local wild boars. This implies that pigs were not domesticated independently in Europe, yet the first 2,500 y of human-mediated selection applied by Near Eastern Ne…

research product

Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe

International audience; Archaeological evidence indicates that pig domestication had begun by ∼10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ∼8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local Euro-pean wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hyp…

research product

Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent

Cattle were domesticated ∼10,000 years ago, but analysis of modern breeds has not elucidated their origins. Verdugo et al. performed genome-wide analysis of 67 ancient Near Eastern Bos taurus DNA samples. Several populations of ancient aurochs were progenitors of domestic cows. These genetic lineages mixed ∼4000 years ago in a region around the Indus Valley. Interestingly, mitochondrial analysis indicated that genetic material likely derived from arid-adapted Bos indicus (zebu) bulls was introduced by introgression.Science, this issue p. 173Genome-wide analysis of 67 ancient Near Eastern cattle, Bos taurus, remains reveals regional variation that has since been obscured by admixture in mode…

research product

The genetic prehistory of domesticated cattle from their origin to the spread across Europe

Background Cattle domestication started in the 9th millennium BC in Southwest Asia. Domesticated cattle were then introduced into Europe during the Neolithic transition. However, the scarcity of palaeogenetic data from the first European domesticated cattle still inhibits the accurate reconstruction of their early demography. In this study, mitochondrial DNA from 193 ancient and 597 modern domesticated cattle (Bos taurus) from sites across Europe, Western Anatolia and Iran were analysed to provide insight into the Neolithic dispersal process and the role of the local European aurochs population during cattle domestication. Results Using descriptive summary statistics and serial coalescent s…

research product

Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series

Summary Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse …

research product

Estimating the chance of success of archaeometric analyses of bone: UV-induced bone fluorescence compared to histological screening

Abstract For most archaeometric analyses on archaeological bone material, such as the determination of the isotopic composition or genetic approaches, an advanced degree of diagenetic alteration can make designated analysis impossible. Since the lack of a positive signal is mostly seen only after time consuming and cost intensive sample processing, the need for an easy-to-apply screening method that allows a pre-selection of samples containing well-preserved biomolecules is obvious. In this study, we visually determined the UV-induced autofluorescence of 76 horse bone cross-sections, all from prehistoric archaeological sites of varying environmental and chronological background. In order to…

research product

Ancient goat genomes reveal mosaic domestication in the Fertile Crescent

How humans got their goatsLittle is known regarding the location and mode of the early domestication of animals such as goats for husbandry. To investigate the history of the goat, Dalyet al.sequenced mitochondrial and nuclear sequences from ancient specimens ranging from hundreds to thousands of years in age. Multiple wild populations contributed to the origin of modern goats during the Neolithic. Over time, one mitochondrial type spread and became dominant worldwide. However, at the whole-genome level, modern goat populations are a mix of goats from different sources and provide evidence for a multilocus process of domestication in the Near East. Furthermore, the patterns described suppor…

research product