0000000000414768

AUTHOR

Lorenzo Lisuzzo

0000-0001-6954-2754

Thermal and Mechanical Characterization of Yarn Samples from Flemish Tapestry of the Sixteenth Century

We propose a physico-chemical approach for theharacterization of the conservation condition of yarns from a Flemish tapestry of the sixteenth century. The aging effect on the yarns’ performance was evaluated by comparison with commercial materials. Water uptake experiments highlighted the aptitude of yarns toward water sorption and their increased hydrophilicity upon aging. Thermogravimetric analysis can be considered a fast approach for the fiber identification and assessment on the material life-time. The dynamic mechanical analysis provided direct evidence on the yarns, conservation state and their performance under different mechanical stresses. The proposed characterization path can be…

research product

Effects of halloysite content on the thermo-mechanical performances of composite bioplastics

Abstract The aim of this study is the design and preparation of Mater-Bi/halloysite nanocomposite materials that could be employed as bioplastics alternative to the petroleum derived products. The biocomposite materials at variable halloysite content (from 0 to 30 wt%) were prepared by using the solvent casting method. We investigated the mechanical behaviour and the thermal properties of the prepared nanocomposites in order to estimate their suitability as biocompatible packaging materials. The thermo-mechanical characteristics were correlated to the nanocomposites' morphologies, which were studied by Scanning Electron Microscopy (SEM). As a general result, the physico-chemical performance…

research product

Why does vacuum drive to the loading of halloysite nanotubes? The key role of water confinement.

The filling of halloysite nanotubes with active compounds solubilized in aqueous solvent was investigated theoretically and experimentally. Based on Knudsen thermogravimetric data, we demonstrated the water confinement within the cavity of halloysite. This process is crucial to properly describe the driving mechanism of halloysite loading. In addition, Knudsen thermogravimetric experiments were conducted on kaolinite nanoplates as well as on halloysite nanotubes modified with an anionic surfactant (sodium dodecanoate) in order to explore the influence of both the nanoparticle morphology and the hydrophobic/hydrophilic character of the lumen on the confinement phenomenon. The analysis of the…

research product

Pickering Emulsions Based on Wax and Halloysite Nanotubes: An Ecofriendly Protocol for the Treatment of Archeological Woods

A novel green protocol for the consolidation and protection of waterlogged archeological woods with wax microparticles has been designed. First, we focused on the development of halloysite nanotubes (HNTs) based Pickering emulsions using wax as the inner phase of the oil-in-water droplets. The optimization of the preparation strategy was supported by both optical microscopy and scanning electron microscopy, which allowed us to show the morphological features of the prepared hybrid systems and their structural properties, i.e., the distribution of the clay at the interface. Also, the dependence of the overall dimensions of the prepared systems on the halloysite content was demonstrated. Micr…

research product

Separation of halloysite/kaolinite mixtures in water controlled by sucrose addition: The influence of the attractive forces on the sedimentation behavior

In this work, we propose an easy strategy for the separation of halloysite/kaolinite mixtures in sucrose aqueous solution. Preliminarily, we investigated the influence of the sucrose addition on the colloidal stability of kaolinite nanoplates and halloysite nanotubes (HNTs) dispersed in water. Dynamic Light Scattering (DLS) measurements revealed that the HNTs aqueous mobility is dependent on the sucrose concentration, while the ζ-potential is negligibly affected by the addition of the carbohydrate in the aqueous solvent. On the other hand, any variations on the surface charge and dynamic behavior of kaolinite were detected in the presence of sucrose. The obtained ζ-potential and DLS results…

research product

Layered composite based on halloysite and natural polymers: a carrier for the pH controlled release of drugs

We have prepared new biohybrid materials based on halloysite nanotubes and natural polymers (alginate and chitosan) for the controlled and sustained release of bioactive species. A functional nanoarchitecture has been designed allowing us to generate a layered tablet with a chitosan/halloysite nanocomposite film sandwiched between two alginate layers. The assembly of the raw components and the final structure of the hybrid tablet have been highlighted by the morphological and wettability properties of the prepared materials. Since the biohybrid has been designed as a smart carrier, halloysite nanotubes have been first loaded with a model drug (sodium diclofenac). The effect of the tablet th…

research product

Exploring Historical Scientific Instruments by Using Mobile Media Devices

We describe an educational activity that can be completed with mobile media devices in order to understand the working principle of a pair of tuning forks, from the Historical Collection of Physics Instruments of the University of Palermo, and how they were used to explain acoustic interference and beats with the Lissajous optical method. This approach can be used with any tuning fork and it is a valuable teaching strategy that does not require specific laboratory equipment.

research product

Core/Shell Gel Beads with Embedded Halloysite Nanotubes for Controlled Drug Release

The use of nanocomposites based on biopolymers and nanoparticles for controlled drug release is an attractive notion. We used halloysite nanotubes that were promising candidates for the loading and release of active molecules due to their hollow cavity. Gel beads based on chitosan with uniformly dispersed halloysite nanotubes were obtained by a dropping method. Alginate was used to generate a coating layer over the hybrid gel beads. This proposed procedure succeeded in controlling the morphology at the mesoscale and it had a relevant effect on the release profile of the model drug from the nanotube cavity.

research product

Halloysite nanotubes filled with salicylic acid and sodium diclofenac: effects of vacuum pumping on loading and release properties

AbstractIn this work, we investigated the effects of the vacuum pumping on both the loading efficiencies and the release kinetics of halloysite nanotubes filled with drug molecules dissolved in ethanol. As model drugs, salicylic acid and sodium diclofenac were selected. For comparison, the loading of the drug molecules was conducted on platy kaolinite to explore the key role of the hollow tubular morphology on the filling mechanism of halloysite. The effects of the pressure conditions used in the loading protocol were interpreted and discussed on the basis of the thermodynamic results provided by Knudsen thermogravimetry, which demonstrated the ethanol confinement inside the halloysite cavi…

research product

Halloysite Nanotubes Coated by Chitosan for the Controlled Release of Khellin

In this work, we have developed a novel strategy to prepare hybrid nanostructures with controlled release properties towards khellin by exploiting the electrostatic interactions between chitosan and halloysite nanotubes (HNT). Firstly, khellin was loaded into the HNT lumen by the vacuum-assisted procedure. The drug confinement within the halloysite cavity has been proved by water contact angle experiments on the HNT/khellin tablets. Therefore, the loaded nanotubes were coated with chitosan as a consequence of the attractions between the cationic biopolymer and the halloysite outer surface, which is negatively charged in a wide pH range. The effect of the ionic strength of the aqueous medium…

research product

Hydroxypropyl Cellulose Films Filled with Halloysite Nanotubes/Wax Hybrid Microspheres

The design of novel nanocomposite films based on hydroxypropyl cellulose (HPC) and wax/halloysite hybrid microspheres has been reported. In particular, we first prepared wax/clay Pickering emulsions which were characterized by thermogravimetric analysis and microscopy. SEM images allowed more detailed insights on the nanotubes disposition at the wax/water interface, acting as an outer stabilizing shell. Therefore, the cellulosic biopolymer was added, and it was found that HPC enhances the colloidal stability of the particles, preventing their coalescence and sedimentation. The preparation of the composite films was carried out by the solvent casting method, which enabled the development of …

research product

Beeswax/halloysite microparticles embedded within a geopolymeric layer for the protective coating of steel

A halloysite-based geopolymer filled with microwax particles was designed as a protective layer on steel substrates. Beeswax microparticles were obtained from the clay stabilized Pickering emulsions and they were homogeneously dispersed within the geopolymeric network, thus improving the coating physico-chemical properties. Specifically, this treatment changed the steel's wettability by increasing its hydrophobicity. Moreover, XRF analysis was conducted in order to have details on the chemical compositions.

research product

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

[EN] Based on the unique ability of defibrillated sepiolite (SEP) to form stable and homogeneous colloidal dispersions of diverse types of nanoparticles in aqueous media under ultrasonication, multicomponent conductive nanoarchitectured materials integrating halloysite nanotubes (HNTs), graphene nanoplatelets (GNPs) and chitosan (CHI) have been developed. The resulting nanohybrid suspensions could be easily formed into films or foams, where each individual component plays a critical role in the biocomposite: HNTs act as nanocontainers for bioactive species, GNPs provide electrical conductivity (enhanced by doping with MWCNTs) and, the CHI polymer matrix introduces mechanical and membrane pr…

research product

A computational and experimental investigation of halloysite silicic surface modifications after alkaline treatment

Density functional theory calculations were performed in order to investigate the formation of silanol groups on the outer surface of halloysite nanotubes, as possible products of the reactions with water in alkaline environments. The results, discussed in terms of energy release and structural properties of the modified surface, suggest that the formation of various kinds of silanol group constellations, and even the extraction of orthosilicic acid, are highly exothermic reaction in the presence of hydroxide ions. Thermogravimetric analysis, FT-IR, XRD and X-ray fluorescence spectrometry performed on halloysite treated at high pH conditions indicate that the adsorption of water on the oute…

research product

Halloysite nanotubes-based nanocomposites for the hydrophobization of hydraulic mortar

Abstract The treatment of stone surfaces for their protection from ageing caused by natural and anthropogenic effects is an open issue in materials development for Cultural Heritage. We thought interesting to verify the suitability of a modified cellulose biofilm filled with halloysite nanotubes as wax compatibilizers to design a protecting layer. A hydraulic mortar was selected as a stone prototype. To improve the physico-chemical properties of the covering layer, wax microparticles have been incorporated to control transport, consolidation and wettability features. In particular, different application protocols have been studied, namely brushing and spraying, to assess whether the propos…

research product

Lifetime predictions of non-ionic and ionic biopolymers: kinetic studies by non-isothermal thermogravimetric analysis

AbstractIn this paper, films based on sustainable polymers with variable charge have been investigated by non-isothermal thermogravimetry in order to predict their lifetime, which is a key parameter for their potential use in numerous technological and biomedical applications. Specifically, chitosan has been selected as positively charged biopolymer, while alginate has been chosen as negatively charged biopolymer. Among non-ionic polymers, methylcellulose has been investigated. Thermogravimetric measurements at variable heating rates (5, 10, 15 and 20 °C min−1) have been performed for all the polymers to study their degradation kinetics by using isoconversional procedures combined with ‘Mas…

research product

Colloidal stability of halloysite clay nanotubes

Abstract The colloidal stability of halloysite clay nanotubes dispersion is reviewed showing the strategy and the mechanism to obtain stable systems in water and apolar solvents. The selective modification of halloysite inner/outer surfaces can be achieved by exploiting electrostatic interactions. The adsorption of anionic surfactants onto the halloysite cavity allows generating inorganic cylindrical micelles that can be separated from the solvent. On the other hand, the functionalization of halloysite shell by positively charged surfactants drives to obtain stable water-in-oil emulsions. The interactions with ionic and nonionic polymers alters the dispersability of halloysite due to electr…

research product

Functional biohybrid materials based on halloysite, sepiolite and cellulose nanofibers for health applications

Biohybrid materials were prepared by co-assembling the three following components: nanotubular halloysite, microfibrous sepiolite, and cellulose nanofibers dispersed in water, in order to exploit the most salient features of each individual component and to render homogeneous, flexible, yet strong films. Indeed, the incorporation of halloysite improves the mechanical performance of the resulting hybrid nanopapers and the assembly of the three components modifies the surface features concerning wetting properties compared to pristine materials, so that the main characteristics of the resulting materials become tunable with regard to certain properties. Owing to their hierarchical porosity to…

research product

Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay-Based Nanoarchitectured Materials.

International audience; Sepiolite and palygorskite fibrous clay minerals are 1D silicates featuring unique textural and structural characteristics useful in diverse applications, and in particular as rheological additives. Here we report on the ability of grinded sepiolite to generate highly viscous and stable hydrogels by sonomechanical irradiation (ultrasounds). Adequate drying of such hydrogels leads to low-density xerogels that show extensive fiber disaggregation compared to the starting sepiolite-whose fibers are agglomerated as bundles. Upon re-dispersion in water under high-speed shear, these xerogels show comparable rheological properties to commercially available defibrillated sepi…

research product

Halloysite nanotubes as nanoreactors for heterogeneous micellar catalysis

Abstract Hypothesis Electrostatic attractions between the anionic head group of sodium alkylsulphates and the positively charged inner surface of halloysite nanotubes (HNTs) drive to the formation of tubular inorganic micelles, which might be employed as nanoreactors for the confinement of non polar compounds in aqueous media. On this basis, sodium alkylsulphates/halloysite hybrids could be efficient nanocatalysts for organic reactions occurring in water. Experiments Sodium decylsulphate (NaDeS) and sodium dodecylsulphate (NaDS) were selected for the functionalization of the halloysite cavity. The composition, the structure and the surface charge properties of the hybrid nanotubes were dete…

research product

Non-isothermal thermogravimetry as an accelerated tool for the shelf-life prediction of paracetamol formulations

Abstract In this work, non-isothermal thermogravimetric studies have been carried out on several paracetamol formulations with the aim to predict their shelf-lives under variable storage conditions. Specifically, paracetamol tablets of different brands have been investigated allowing to estimate their pharmaceutical quality by considering the specific drug stability. The proposed protocol is based on the kinetic study of thermogravimetric data by the combination of isoconversional procedures (Friedman and Kissinger-Akahira-Sunose (KAS) methods) and “Master plot” analysis. Accordingly, the kinetics of the paracetamol degradation is totally explored in terms of activation energy, pre-exponent…

research product

Printable Hydrogels Based on Alginate and Halloysite Nanotubes.

The design of hydrogels for the controlled release of active species is an attractive challenge. In this work, we prepared hybrid hydrogels composed of halloysite nanotubes as the inorganic component, and alginate as the organic counterpart. The reported procedure allowed us to provide the resulting materials with a peculiar wire-like shape. Both optical and scanning electron microscopy were used to characterize the morphological properties of the hydrogel wires, whose diameters were ca. 0.19 and 0.47 mm, respectively. The possibility to be exploited as drug delivery systems was carried out by loading the nanoclay with salicylic acid and by studying the release profiles. Thermogravimetric e…

research product

Selective adsorption of oppositely charged PNIPAAM on halloysite surfaces: a route to thermo-responsive nanocarriers.

Halloysite nanotubes were functionalized with stimuli-responsive macromolecules to generate smart nanohybrids. Poly(N-isopropylacrylamide)-co-methacrylic acid (PNIPAAM-co-MA) was selectively adsorbed into halloysite lumen by exploiting electrostatic interactions. Amine-terminated PNIPAAM polymer was also investigated that selectively interacts with the outer surface of the nanotubes. The adsorption site has a profound effect on the thermodynamic behavior and therefore temperature responsive features of the hybrid material. The drug release kinetics was investigated by using diclofenac as a non-steroidal anti-inflammatory drug model. The release kinetics depends on the nanoarchitecture of th…

research product

Halloysite based geopolymers filled with wax microparticles as sustainable building materials with enhanced thermo-mechanical performances

This work proposes a novel protocol for the fabrication of halloysite based geopolymers filled with beeswax microparticles obtained from Pickering emulsions. The actual filling of the microwax into the geopolymers has been demonstrated by using several techniques, including thermal analyses, spectroscopies, microscopies and contact angle experiments. According to the morphological and structural investigations, microwax spherical particles (diameter ranging between ca. 3 and 5 μm) have been homogeneously dispersed within the geopolymeric network conferring excellent properties to the hybrid geopolymers in terms of mechanical performances and heat storage capacity although their low content …

research product

Filling of Mater-Bi with Nanoclays to Enhance the Biofilm Rigidity

We investigated the efficacy of several nanoclays (halloysite, sepiolite and laponite) as nanofillers for Mater-Bi, which is a commercial bioplastic extensively used within food packaging applications. The preparation of Mater-Bi/nanoclay nanocomposite films was easily achieved by means of the solvent casting method from dichloroethane. The prepared bio-nanocomposites were characterized by dynamic mechanical analysis (DMA) in order to explore the effect of the addition of the nanoclays on the mechanical behavior of the Mater-Bi-based films. Tensile tests found that filling Mater-Bi with halloysite induced the most significant improvement of the mechanical performances under traction force, …

research product

Pickering Emulsions Stabilized by Halloysite Nanotubes: From General Aspects to Technological Applications

Besides surfactants, which decrease the interfacial tension between two immiscible liquids, also interfacially active particles can successfully stabilize an emulsion system by attaching at the liquid–liquid interface. The preparation of the resulting Pickering emulsions has been so far investigated starting from the study of the interactions arising between the dispersed droplets and the stabilizers, till the application of these systems in a wide range of different fields. This work is intended to provide an overall overview about the development of Pickering emulsions by considering the most general aspects and scanning the diverse types of solid stabilizers. Among them, Halloysite nanot…

research product

Colloidal stability and self-assembling behavior of nanoclays

Abstract Currently, nanoclays are attracting the attention of a wide part of the scientific community, due to some of their most peculiar features that make them good candidates for applications in different fields. In light of this, some strategies can be pursued in order to obtain stable colloidal dispersions of nanoclays with the aim to improve their features and to expand their use. Hence, this chapter presents an overview on the structural and morphological characteristics, the physico-chemical properties and the main approaches that are taken into account for the preparation of homogeneous suspensions of Halloysite, Imogolite and Laponite in both aqueous and apolar solvent media. In p…

research product

Stability of Halloysite, Imogolite, and Boron Nitride Nanotubes in Solvent Media

Inorganic nanotubes are attracting the interest of many scientists and researchers, due to their excellent application potential in different fields. Among them, halloysite and imogolite, two naturally-occurring aluminosilicate mineral clays, as well as boron nitride nanotubes have gained attention for their proper shapes and features. Above all, it is important to reach highly stable dispersion in water or organic media, in order to exploit the features of this kind of nanoparticles and to expand their applications. This review is focused on the structural and morphological features, performances, and ratios of inorganic nanotubes, considering the main strategies to prepare homogeneous col…

research product

Halloysite nanotubes filled with MgO for paper reinforcement and deacidification

Abstract A novel material for the deacidification and protection of paper has been designed by using MgO filled halloysite nanotubes (Hal). The ability of MgO loaded nanotubes to control the acidic conditions was evaluated by pH measurements in aqueous solvent. Afterwards, paper was impregnated into hydroxypropyl cellulose dispersions containing the consolidating material. A simulation of strong acidic conditions allowed us to evaluate the deacidification effect of the composite material on the samples. In particular, the paper reaches a pH of 7.7 after 1 h exposition to HNO3 vapours when MgO-Hal nanoparticles are added to the impregnation mixture at a concentration of 10 wt% and it remains…

research product

Comparative study of historical woods from XIX century by thermogravimetry coupled with FTIR spectroscopy

Thermal and structural properties of historical woods from apparatuses of the Historical Collection of the Physics Instruments of the University of Palermo have been investigated by FTIR spectroscopy coupled with thermogravimetric analysis. Specifically, the wooden portions of apparatuses from XIX century have been studied. The investigated woods belong to different taxa (Swietenia mahagoni, Picea abies and Juglans regia). The thermal behavior of the wooden materials has been successfully interpreted on the basis of specific indexes determined by the quantitative analysis of the FTIR spectra. The kinetics of the wood pyrolysis have been investigated by using a non-isothermal approach based …

research product