0000000000460031
AUTHOR
Yongchao Liu
Bit-Parallel Approximate Pattern Matching on the Xeon Phi Coprocessor
Bit-parallel pattern matching encodes calculated values in bit arrays. This approach gains its efficiency by performing multiple updates within a machine word. An important parameter is therefore the machine word size (e.g. 32 or 64 bits). With the increasing length of vector registers, the efficient mapping of bit-parallel pattern matching algorithms onto modern high performance computing architectures is becoming increasingly important. In this paper, we investigate an efficient implementation of the Wu-Manber approximate pattern matching algorithm on the Intel Xeon Phi coprocessor. This architecture features a 512-bit long vector processing unit (VPU) as well as a large number of process…
Multiple Protein Sequence Alignment with MSAProbs
Multiple sequence alignment (MSA) generally constitutes the foundation of many bioinformatics studies involving functional, structural, and evolutionary relationship analysis between sequences. As a result of the exponential computational complexity of the exact approach to producing optimal multiple alignments, the majority of state-of-the-art MSA algorithms are designed based on the progressive alignment heuristic. In this chapter, we outline MSAProbs, a parallelized MSA algorithm for protein sequences based on progressive alignment. To achieve high alignment accuracy, this algorithm employs a hybrid combination of a pair hidden Markov model and a partition function to calculate posterior…
Bit-parallel approximate pattern matching: Kepler GPU versus Xeon Phi
Advanced SIMD features on GPUs and Xeon Phis promote efficient long pattern search.A tiled approach to accelerating the Wu-Manber algorithm on GPUs has been proposed.Both the GPU and Xeon Phi yield two orders-of-magnitude speedup over one CPU core.The GPU-based version with tiling runs up to 2.9 × faster than the Xeon Phi version. Approximate pattern matching (APM) targets to find the occurrences of a pattern inside a subject text allowing a limited number of errors. It has been widely used in many application areas such as bioinformatics and information retrieval. Bit-parallel APM takes advantage of the intrinsic parallelism of bitwise operations inside a machine word. This approach typica…
AFS: identification and quantification of species composition by metagenomic sequencing
Abstract Summary DNA-based methods to detect and quantify taxon composition in biological materials are often based on species-specific polymerase chain reaction, limited to detecting species targeted by the assay. Next-generation sequencing overcomes this drawback by untargeted shotgun sequencing of whole metagenomes at affordable cost. Here we present AFS, a software pipeline for quantification of species composition in food. AFS uses metagenomic shotgun sequencing and sequence read counting to infer species proportions. Using Illumina data from a reference sausage comprising four species, we reveal that AFS is independent of the sequencing assay and library preparation protocol. Cost-sav…
All-Food-Seq (AFS) : a quantifiable screen for species in biological samples by deep DNA sequencing
Parallel and scalable short-read alignment on multi-core clusters using UPC++
[Abstract]: The growth of next-generation sequencing (NGS) datasets poses a challenge to the alignment of reads to reference genomes in terms of alignment quality and execution speed. Some available aligners have been shown to obtain high quality mappings at the expense of long execution times. Finding fast yet accurate software solutions is of high importance to research, since availability and size of NGS datasets continue to increase. In this work we present an efficient parallelization approach for NGS short-read alignment on multi-core clusters. Our approach takes advantage of a distributed shared memory programming model based on the new UPC++ language. Experimental results using the …
CUSHAW2-GPU: Empowering Faster Gapped Short-Read Alignment Using GPU Computing
We present CUSHAW2-GPU to accelerate the CUSHAW2 algorithm using compute unified device architecture (CUDA)-enabled GPUs. Two critical GPU computing techniques, namely intertask hybrid CPU-GPU parallelism and tile-based Smith-Waterman map backtracking using CUDA, are investigated to facilitate fast alignments. By aligning both simulated and real reads to the human genome, our aligner yields comparable or better performance compared to BWA-SW, Bowtie2, and GEM. Furthermore, CUSHAW2-GPU with a Tesla K20c GPU achieves significant speedups over the multithreaded CUSHAW2, BWA-SW, Bowtie2, and GEM on the 12 cores of a high-end CPU for both single-end and paired-end alignment.
Long read alignment based on maximal exact match seeds
Abstract Motivation: The explosive growth of next-generation sequencing datasets poses a challenge to the mapping of reads to reference genomes in terms of alignment quality and execution speed. With the continuing progress of high-throughput sequencing technologies, read length is constantly increasing and many existing aligners are becoming inefficient as generated reads grow larger. Results: We present CUSHAW2, a parallelized, accurate, and memory-efficient long read aligner. Our aligner is based on the seed-and-extend approach and uses maximal exact matches as seeds to find gapped alignments. We have evaluated and compared CUSHAW2 to the three other long read aligners BWA-SW, Bowtie2 an…
High-speed and accurate color-space short-read alignment with CUSHAW2
Summary: We present an extension of CUSHAW2 for fast and accurate alignments of SOLiD color-space short-reads. Our extension introduces a double-seeding approach to improve mapping sensitivity, by combining maximal exact match seeds and variable-length seeds derived from local alignments. We have compared the performance of CUSHAW2 to SHRiMP2 and BFAST by aligning both simulated and real color-space mate-paired reads to the human genome. The results show that CUSHAW2 achieves comparable or better alignment quality compared to SHRiMP2 and BFAST at an order-of-magnitude faster speed and significantly smaller peak resident memory size. Availability: CUSHAW2 and all simulated datasets are avail…
HECTOR : a parallel multistage homopolymer spectrum based error corrector for 454 sequencing data
Background Current-generation sequencing technologies are able to produce low-cost, high-throughput reads. However, the produced reads are imperfect and may contain various sequencing errors. Although many error correction methods have been developed in recent years, none explicitly targets homopolymer-length errors in the 454 sequencing reads. Results We present HECTOR, a parallel multistage homopolymer spectrum based error corrector for 454 sequencing data. In this algorithm, for the first time we have investigated a novel homopolymer spectrum based approach to handle homopolymer insertions or deletions, which are the dominant sequencing errors in 454 pyrosequencing reads. We have evaluat…
Parallel and Space-Efficient Construction of Burrows-Wheeler Transform and Suffix Array for Big Genome Data
Next-generation sequencing technologies have led to the sequencing of more and more genomes, propelling related research into the era of big data. In this paper, we present ParaBWT, a parallelized Burrows-Wheeler transform (BWT) and suffix array construction algorithm for big genome data. In ParaBWT, we have investigated a progressive construction approach to constructing the BWT of single genome sequences in linear space complexity, but with a small constant factor. This approach has been further parallelized using multi-threading based on a master-slave coprocessing model. After gaining the BWT, the suffix array is constructed in a memory-efficient manner. The performance of ParaBWT has b…
CUSHAW3: Sensitive and Accurate Base-Space and Color-Space Short-Read Alignment with Hybrid Seeding
The majority of next-generation sequencing short-reads can be properly aligned by leading aligners at high speed. However, the alignment quality can still be further improved, since usually not all reads can be correctly aligned to large genomes, such as the human genome, even for simulated data. Moreover, even slight improvements in this area are important but challenging, and usually require significantly more computational endeavor. In this paper, we present CUSHAW3, an open-source parallelized, sensitive and accurate short-read aligner for both base-space and color-space sequences. In this aligner, we have investigated a hybrid seeding approach to improve alignment quality, which incorp…
MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems
This is a pre-copyedited, author-produced version of an article accepted for publication in Bioinformatics following peer review. The version of recordJorge González-Domínguez, Yongchao Liu, Juan Touriño, Bertil Schmidt; MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems, Bioinformatics, Volume 32, Issue 24, 15 December 2016, Pages 3826–3828, https://doi.org/10.1093/bioinformatics/btw558is available online at: https://doi.org/10.1093/bioinformatics/btw558 [Abstracts] MSAProbs is a state-of-the-art protein multiple sequence alignment tool based on hidden Markov models. It can achieve high alignment accuracy at the expense of relatively long runtimes for large-sca…
SWAPHI-LS: Smith-Waterman Algorithm on Xeon Phi coprocessors for Long DNA Sequences
As an optimal method for sequence alignment, the Smith-Waterman (SW) algorithm is widely used. Unfortunately, this algorithm is computationally demanding, especially for long sequences. This has motivated the investigation of its acceleration on a variety of high-performance computing platforms. However, most work in the literature is only suitable for short sequences. In this paper, we present SWAPHI-LS, the first parallel SW algorithm exploiting emerging Xeon Phi coprocessors to accelerate the alignment of long DNA sequences. In SWAPHI-LS, we have investigated three parallelization approaches (naive, tiled, and distributed) in order to deeply explore the inherent parallelism within Xeon P…
SNVSniffer: an integrated caller for germline and somatic single-nucleotide and indel mutations
Various approaches to calling single-nucleotide variants (SNVs) or insertion-or-deletion (indel) mutations have been developed based on next-generation sequencing (NGS). However, most of them are dedicated to a particular type of mutation, e.g. germline SNVs in normal cells, somatic SNVs in cancer/tumor cells, or indels only. In the literature, efficient and integrated callers for both germline and somatic SNVs/indels have not yet been extensively investigated. We present SNVSniffer, an efficient and integrated caller identifying both germline and somatic SNVs/indels from NGS data. In this algorithm, we propose the use of Bayesian probabilistic models to identify SNVs and investigate a mult…
Parallelized short read assembly of large genomes using de Bruijn graphs
Abstract Background Next-generation sequencing technologies have given rise to the explosive increase in DNA sequencing throughput, and have promoted the recent development of de novo short read assemblers. However, existing assemblers require high execution times and a large amount of compute resources to assemble large genomes from quantities of short reads. Results We present PASHA, a parallelized short read assembler using de Bruijn graphs, which takes advantage of hybrid computing architectures consisting of both shared-memory multi-core CPUs and distributed-memory compute clusters to gain efficiency and scalability. Evaluation using three small-scale real paired-end datasets shows tha…
SNVSniffer: An integrated caller for germline and somatic SNVs based on Bayesian models
The discovery of single nucleotide variants (SNVs) from next-generation sequencing (NGS) data typically works by aligning reads to a given genome and then creating an alignment map to interpret the presence of SNVs. Various approaches have been developed to call whether germline SNVs (or SNPs) in normal cells or somatic SNVs in cancer/tumor cells. Nonetheless, efficient callers for both germline and somatic SNVs have not yet been extensively investigated. In this paper, we present SNVSniffer, an integrated caller for germline and somatic SNVs from NGS data based on Bayesian probabilistic models. In SNVSniffer, our germline SNV calling models allele counts per site as a multinomial condition…
Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data
Abstract Motivation: The imperfect sequence data produced by next-generation sequencing technologies have motivated the development of a number of short-read error correctors in recent years. The majority of methods focus on the correction of substitution errors, which are the dominant error source in data produced by Illumina sequencing technology. Existing tools either score high in terms of recall or precision but not consistently high in terms of both measures. Results: In this article, we present Musket, an efficient multistage k-mer-based corrector for Illumina short-read data. We use the k-mer spectrum approach and introduce three correction techniques in a multistage workflow: two-s…
Pairwise DNA Sequence Alignment Optimization
This chapter presents a parallel implementation of the Smith-Waterman algorithm to accelerate the pairwise alignment of DNA sequences. This algorithm is especially computationally demanding for long DNA sequences. Parallelization approaches are examined in order to deeply explore the inherent parallelism within Intel Xeon Phi coprocessors. This chapter looks at exploiting instruction-level parallelism within 512-bit single instruction multiple data instructions (vectorization) as well as thread-level parallelism over the many cores (multithreading using OpenMP). Between coprocessors, device-level parallelism through the compute power of clusters including Intel Xeon Phi coprocessors using M…
CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions
Background The maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases. Results We present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated for the first time a GPU …
Mapping of BLASTP Algorithm onto GPU Clusters
Searching protein sequence database is a fundamental and often repeated task in computational biology and bioinformatics. However, the high computational cost and long runtime of many database scanning algorithms on sequential architectures heavily restrict their applications for large-scale protein databases, such as GenBank. The continuing exponential growth of sequence databases and the high rate of newly generated queries further deteriorate the situation and establish a strong requirement for time-efficient scalable database searching algorithms. In this paper, we demonstrate how GPU clusters, powered by the Compute Unified Device Architecture (CUDA), OpenMP, and MPI parallel programmi…
SWAPHI: Smith-Waterman Protein Database Search on Xeon Phi Coprocessors
The maximal sensitivity of the Smith-Waterman (SW) algorithm has enabled its wide use in biological sequence database search. Unfortunately, the high sensitivity comes at the expense of quadratic time complexity, which makes the algorithm computationally demanding for big databases. In this paper, we present SWAPHI, the first parallelized algorithm employing Xeon Phi coprocessors to accelerate SW protein database search. SWAPHI is designed based on the scale-and-vectorize approach, i.e. it boosts alignment speed by effectively utilizing both the coarse-grained parallelism from the many co-processing cores (scale) and the fine-grained parallelism from the 512-bit wide single instruction, mul…
PUNAS: A Parallel Ungapped-Alignment-Featured Seed Verification Algorithm for Next-Generation Sequencing Read Alignment
The progress of next-generation sequencing has a major impact on medical and genomic research. This technology can now produce billions of short DNA fragments (reads) in a single run. One of the most demanding computational problems used by almost every sequencing pipeline is short-read alignment; i.e. determining where each fragment originated from in the original genome. Most current solutions are based on a seed-and-extend approach, where promising candidate regions (seeds) are first identified and subsequently extended in order to verify whether a full high-scoring alignment actually exists in the vicinity of each seed. Seed verification is the main bottleneck in many state-of-the-art a…
SWhybrid: A Hybrid-Parallel Framework for Large-Scale Protein Sequence Database Search
Computer architectures continue to develop rapidly towards massively parallel and heterogeneous systems. Thus, easily extensible yet highly efficient parallelization approaches for a variety of platforms are urgently needed. In this paper, we present SWhybrid, a hybrid computing framework for large-scale biological sequence database search on heterogeneous computing environments with multi-core or many-core processing units (PUs) based on the Smith- Waterman (SW) algorithm. To incorporate a diverse set of PUs such as combinations of CPUs, GPUs and Xeon Phis, we abstract them as SIMD vector execution units with different number of lanes. We propose a machine model, associated with a unified …
Faster GPU-Accelerated Smith-Waterman Algorithm with Alignment Backtracking for Short DNA Sequences
In this paper, we present a GPU-accelerated Smith-Waterman (SW) algorithm with Alignment Backtracking, called GSWAB, for short DNA sequences. This algorithm performs all-to-all pairwise alignments and retrieves optimal local alignments on CUDA-enabled GPUs. To facilitate fast alignment backtracking, we have investigated a tile-based SW implementation using the CUDA programming model. This tiled computing pattern enables us to more deeply explore the powerful compute capability of GPUs. We have evaluated the performance of GSWAB on a Kepler-based GeForce GTX Titan graphics card. The results show that GSWAB can achieve a performance of up to 56.8 GCUPS on large-scale datasets. Furthermore, ou…
GSWABE: faster GPU-accelerated sequence alignment with optimal alignment retrieval for short DNA sequences
In this paper, we present GSWABE, a graphics processing unit GPU-accelerated pairwise sequence alignment algorithm for a collection of short DNA sequences. This algorithm supports all-to-all pairwise global, semi-global and local alignment, and retrieves optimal alignments on Compute Unified Device Architecture CUDA-enabled GPUs. All of the three alignment types are based on dynamic programming and share almost the same computational pattern. Thus, we have investigated a general tile-based approach to facilitating fast alignment by deeply exploring the powerful compute capability of CUDA-enabled GPUs. The performance of GSWABE has been evaluated on a Kepler-based Tesla K40 GPU using a varie…
Evaluation of GPU-based Seed Generation for Computational Genomics Using Burrows-Wheeler Transform
Unprecedented production of short reads from the new high-throughput sequencers has posed challenges to align short reads to reference genomes with high sensitivity and high speed. Many CPU-based short read aligners have been developed to address this challenge. Among them, one popular approach is the seed-and-extend heuristic. For this heuristic, the first and foremost step is to generate seeds between the input reads and the reference genome, where hash tables are the most frequently used data structure. However, hash tables are memory-consuming, making it not well-suited to memory-stringent many-core architectures, like GPUs, even though they usually have a nearly constant query time com…
CUSHAW Suite: Parallel and Efficient Algorithms for NGS Read Alignment
Next generation sequencing (NGS) technologies have enabled cheap, large-scale, and high-throughput production of short DNA sequence reads and thereby have promoted the explosive growth of data volume. Unfortunately, the produced reads are short and prone to contain errors that are incurred during sequencing cycles. Both large data volume and sequencing errors have complicated the mapping of NGS reads onto the reference genome and have motivated the development of various aligners for very short reads, typically less than 100 base pairs (bps) in length. As read length continues to increase, propelled by advances in NGS technologies, these longer reads tend to have higher sequencing error rat…
LightSpMV: Faster CSR-based sparse matrix-vector multiplication on CUDA-enabled GPUs
Compressed sparse row (CSR) is a frequently used format for sparse matrix storage. However, the state-of-the-art CSR-based sparse matrix-vector multiplication (SpMV) implementations on CUDA-enabled GPUs do not exhibit very high efficiency. This has motivated the development of some alternative storage formats for GPU computing. Unfortunately, these alternatives are incompatible with most CPU-centric programs and require dynamic conversion from CSR at runtime, thus incurring significant computational and storage overheads. We present LightSpMV, a novel CUDA-compatible SpMV algorithm using the standard CSR format, which achieves high speed by benefiting from the fine-grained dynamic distribut…