0000000000469527
AUTHOR
Nicola Campagna
A Hybrid Energy Storage Sizing for a Vertical Take-off and Landing Electric Aircraft
The energy storage sizing procedure for an all-electric aircraft, characterised by vertical take-off and landing (VTOL), is presented in the paper. In order to define the energy consumption, the propulsion system model has been developed and simulated, referring to a specific configuration of VOLT obtained by the transformation of a very light twin-propeller aircraft named Tecnam P2012 T. Specifically, a flight mission-oriented to air city taxing has been considered. The simulation results highlight the presence of significant peak power during take-off and landing. At the aim of optimising the weight and the volume of the energy storage systems (ESSs), considered a critical issue in all-el…
Master-Slave Control of Battery/Supercapacitor Based Hybrid Energy Storage System for E-Vehicle Application
In this paper, management and control problem of hybrid energy storage system (HESS) has been solved by master-slave control strategy. Heuristic fuzzy rules based algorithm is developed for optimal power sharing between different power sources. The master control is followed by a slave level controller, designed by using terminal synergetic control method for tracking. Moreover, the stability analysis of closed-loop system has been carried out by using lyapunov theory. Finally, the proposed method has been tested in MATLAB/Simulink environment under Worldwide Harmonised Light Vehicle Test Procedure (WLTP).
Hybrid Energy Storage Systems: A Brief Overview
In this paper, a brief overview on the Hybrid Energy Storage Systems (HESSs) is provided. In literature, different architectures are chosen to realize the HESSs, and they are based on the principal aim of the HESSs employment. In this paper, the most used HESS topologies are presented, with particular attention to the active, passive and semiactive topologies, highlighting their characteristics. To have a complete schematic idea of the HESSs application, a focus on the principal sizing methodologies is provided, distinguishing the conventional approaches and the advanced ones, exploiting their main applications. Together with a proper sizing, a correct power-sharing strategy is one of the H…
Design, implementation and experimental results of a wireless charger for E-bikes
Based on the Inductive Power Transfer (IPT), the wireless energy transmission is increasingly representing an attractive solution for vehicle battery charging. Due to its high smartness, the wireless solution may be considered an interesting battery charging method for electric bicycles, as they represent light-weight and flexible means of transportation. According to the Vehicle-To-Grid (V2G) concept, the wireless power flow can occur in both the alternative directions: from the grid to the battery or in the opposite way. A Bi-Directional Inductive Power Transfer (BDIPT) system is therefore particularly convenient in the scenario of a multi-parking area. For the E-bike application, a bicyc…
Speed detection of battery-free nodes based on RF Wireless Power Transfer
In the Internet of Things (IoT) era, Wireless Sensor Networks (WSNs) are rapidly increasing in terms of relevance and pervasiveness thanks to their notable real-time monitoring performance across several fields, including industrial, domestic, military, biomedical, commercial, environmental, and other sectors. A highly attractive implementation of WSNs is asset tracking with accurate data regarding the location and transportation conditions of goods, equipment, and the like. One highly promising application of WSNs along these lines is the remote speed monitoring of goods, ideally with battery-free sensor nodes that do not require any maintenance. This, however, represents a major challenge…
Performance Comparison of modified modulation Techniques for Quasi-Z-Source Converters
The single-stage converters represent an innovation in the field of power electronics thanks their features. Aim of this work consists in the improvement of the performances of quasi-Z-Source converters by adopting a modified modulation technique, which is based on the Maximum Constant Boost Control (MCBC) and Switching Frequency Optimal (SFO). The results in terms of voltage stress and harmonic content are compared with those obtained with conventional techniques, demonstrating the effectiveness of the proposed modulation scheme.
Experimental Characterization of a Double Receiver Dynamic Wireless Charging System
The aim of this work is the characterization of a dynamic wireless charging system low power prototype and the validation of a simplified mathematical model of the employed double D coils. The difference between a single receiver and a dual receiver system is also shown, highlighting how the last one can significantly reduce the costs of the charging infrastructure.
Design, implementation and experimental results of an inductive power transfer system for electric bicycle wireless charging
The use of renewable energy and the transformation of transport mode are crucial items for achieving an efficient and clean electrical mobility that allow being competitive on the market. In this context the interface between the power system and the Electric Vehicles (EVs) assumes a strategic role. Specifically, wireless energy transmission, based on Inductive Power Transfer (IPT), is an attractive solution for EVs charging. Moreover, the use of electric bicycles or kick scooters as mode of urban transport is continuously growing because they are lightweight, sustainable, easily parking, flexible and efficient transport devices. Owing to its benefits, the wireless power transfer can be con…
Wireless Power Transfer for Electric Vehicles: System Design Approach and Energy Storage Characterization
This thesis is the result of the research work carried out as part of the PhD course in Energy and Information Technology between November 2019 and January 2023 at the University of Palermo jointly with the University of Lisbon. The research project has been focused on wireless charging systems for electric vehicles. A wide-ranging analysis was conducted on the topic, with a particular focus on the design aspects of these systems. This thesis, a summary of the work carried out over the previous three years, is organized into two parts, identifying the macro research activities into which the project was been divided. The first part is focused on the design approach of the Wireless Power Tra…
Selective harmonic mitigation with asymmetrical staircase voltage waveform for a three-phase five-level Cascaded H-Bridge Inverter
Selective harmonics elimination or mitigation strategies are used in all applications where it is necessary to rise the efficiency and reliability of the overall system. This paper presents a simple approach to reduce the low order harmonics amplitude of an asymmetrical staircase voltage waveform for a five-level, three-phase Cascaded H-Bridge Inverter without solving non-linear equations. Through this simple approach, polynomial equations to evaluate the control angels in real-time operations have been found. The effectiveness of the harmonic mitigation method has been tested through the simulation analysis in MatLab/PLECS environment.
Modelling, Simulation and Characterization of a Supercapacitor in Automotive Applications
The energy storage is one of the most discussed topics among Electrical Vehicles (EVs) research. Currently, supercapacitors (SCs) are collecting even more attention due to their unique features such as high-power density, high life cycle and lack of maintenance. In this paper, a supercapacitor model suitable for the simulation in automotive applications is identified. The model parameters are estimated and used to simulate the behaviour of a commercial SCs bank in different operating conditions. The model is finally validated considering experimental results.
Stability of Microgrids: An Application of Virtual Synchronous Generator
The objective of this paper is to illustrate an alternative control algorithm for power converters which have the task of introducing the energy generated by systems based on the use of renewable sources such as, photovoltaic or wind power, in to small-sized networks, microgrids. Virtual Synchronous Generator can operate both in parallel to the main network as well as in isolated and autonomous conditions (islanding-mode). The contribute of this work is to drive a consolidate approach, made in time domain, in a more flexible and less time-consuming approach based on Park transformation.
Modelling, simulation and characterization of a supercapacitor
In the last decade, the issue of air pollution or the reduction of CO2 emissions has become of extreme interest both for civil society and then for the industrial and scientific research world. For this reason, the scientific research on automotive is called to answer with increasingly innovative solutions. One of the principal subjects are the storage and the utilization of the electric energy for electrical and hybrid vehicles. Nowadays, supercapacitors are getting more and more attention because of their characteristics that allow them to be a bridge between electrolytic capacitors and batteries in several application such as bust-mode energy delivery, regenerative breaks and so on. The …
A Hybrid Storage Systems for All Electric Aircraft
A hybrid energy storage system specifically designed for a fully electric aircraft is presented in the paper. The analysis of the time evolution of the power demand of the electric propulsion system during a test mission of Maxwell X-57, an all-electric aircraft developed by NASA, has pointed out the presence of significant peak power during take-off and air tack. Considered the issues related to weight and the volume of the energy storage systems (ESSs) in all-electric aircraft, a hybridization of aircraft ESS with a Supercapacitors (SCs) bank, devoted to smooth peak power demand, has been investigated. A comparison between the simulation results of an electrochemical battery and hybrid ES…
Modelling, Simulation and Characterization of a Supercapacitor in Automotive Applications
In the energy storage field, supercapacitors (SCs) are gaining more and more attention thanks to features such as high-power density, high life cycles and lack of maintenance. In this article, an improved SC three-branches model which considers the residual charge phenomenon is presented. The procedure to estimate the model parameters and the related experimental set-up are presented. The parameter estimation procedure is repeated for several SCs of the same type. The average parameters are then obtained and used as initial guesses for a recursive least square optimization algorithm, to increase the accuracy of the model. The model of a single SC is then extended to SC banks, testing differ…
Hydrogen Supplied Wireless Charging System for Electric Vehicles
The aim of this work is the experimental characterization of a Wireless Charging System based on IPT (Inductive Power Transfer) supplied by a PEMFC (Proton Exchange Membrane Fuel Cell) in order to verify the possibility of its installation in not electrified areas. A hydrogen-based supply system is designed and assembled with the purpose of having an EV (electrical vehicle) charging station not connected to the main power grid. An efficiency analysis of the wireless transmission system is carried out taking into account external parameters such as distance and misalignment between the transmitter coil and the receiver coil, verifying the integration potentialities of both IPT and fuel cell …
An Iterative Method for Bifurcation-Free Resonant Inductive Power Transfer System Design
The development of electric mobility makes the charging systems one of the main discussed topic. Among the different technologies, Resonant Inductive Power Transfer (RIPT) systems are in deep study. Several aspects, including the choice of coils, the compensation network and the bifurcation phenomenon are necessary for a proper design of the system. In this paper an iterative method for bifurcation-free RIPT system design is provided as a valid solution to the need of accurate models requiring low computational efforts.
Battery Models for Battery Powered Applications: A Comparative Study
Battery models have gained great importance in recent years, thanks to the increasingly massive penetration of electric vehicles in the transport market. Accurate battery models are needed to evaluate battery performances and design an efficient battery management system. Different modeling approaches are available in literature, each one with its own advantages and disadvantages. In general, more complex models give accurate results, at the cost of higher computational efforts and time-consuming and costly laboratory testing for parametrization. For these reasons, for early stage evaluation and design of battery management systems, models with simple parameter identification procedures are…
Interior Permanent Magnet Synchronous Machine Drive Powered by Fuel Cell for Automotive Applications
Electric vehicles represent an optimal solution for the reduction of pollution in urban areas. In particular, the Fuel Cell (FC) technology is a promising solution especially for its charging times and zero CO2 direct emissions. The paper addresses the design and performance study of an Interior Permanent Magnet Synchronous Machine (IPMSM) drive powered by fuel cell for automotive applications. The IPMSM drive is powered by the use of 5,5 kW FC unit and it is composed of two DC-DC power converters and one inverter. In detail, a test bench has been carried out for the evaluation of the performances of each IPMSM drive conversion stage. Moreover, in order to simulate automotive working condit…