Epoxidation of Olefins with a Silica-Supported Peracid
Anhydrous [2-percarboxyethyl] functionalized silica (2a) is an advantageous oxidant for performing the epoxidation of olefins 1. Epoxides 3 do not undergo the ring-opening reactions catalyzed by the acidic silica surface, except for particularly activated cases such as styrene oxide. The hydrophilic and acidic character of the silica surface does not interfere with the directing effects exerted by allylic H-bond acceptor substituents. The alkenes 1 carrying hydroxyl groups react with silica-supported peracid 2a faster than unsubstituted alkenes, thus reversing the trend known for reactions with soluble peracids. These results are attributed to the H-bond interactions of substrate 1 with the…
ChemInform Abstract: Epoxidation of Olefins with a Silica-Supported Peracid.
Anhydrous [2-percarboxyethyl] functionalized silica (2a) is an advantageous oxidant for performing the epoxidation of olefins 1. Epoxides 3 do not undergo the ring-opening reactions catalyzed by the acidic silica surface, except for particularly activated cases such as styrene oxide. The hydrophilic and acidic character of the silica surface does not interfere with the directing effects exerted by allylic H-bond acceptor substituents. The alkenes 1 carrying hydroxyl groups react with silica-supported peracid 2a faster than unsubstituted alkenes, thus reversing the trend known for reactions with soluble peracids. These results are attributed to the H-bond interactions of substrate 1 with the…
Iodomethane Oxidation by Dimethyldioxirane: A New Route to Hypoiodous Acid and Iodohydrines
The oxidation of iodomethane with dimethyldioxirane allows the generation of stable neutral solutions of hypoiodous acid in the absence of any trapping agent for iodide anion. Hypoiodous acid is trapped in situ by addition to representative olefins to give iodohydrines in good yields. The stereochemical study of the products shows the anti-stereospecific nature of the iodohydroxylation reaction.
Baeyer–Villiger oxidation of ketones with a silica-supported peracid in supercritical carbon dioxide under flow conditions
[2-Percarboxyethyl]-functionalized silica reacts with ketones in supercritical carbon dioxide at 250 bar and 40 °C under flow conditions to yield the corresponding esters and lactones. The solid reagent can be easily recycled through treatment with 70% hydrogen peroxide in the presence of an acid at 0 °C. This procedure not only simplifies the isolation of the reaction products, but has the advantage of using only water and carbon dioxide as solvents under mild conditions.
Photolysis of Tertiary Amines in the Presence of CO2: The Paths to Formic Acid, α-Amino Acids, and 1,2-Diamines
The photolysis of triethylamine (1a) in the presence of carbon dioxide leads to the hydrogenation of CO2, the α-C-C coupling of triethylamine (1a), and the CO2-insertion into the α-C-H σ-bond of amine 1a. This reaction is proposed to proceed through the radical ion pair [R3N·+·CO2·-] generated by the photoionization of amine 1a and the electron capture by CO2. The presence of lithium tetrafluoroborate in the reaction medium promotes the efficient and stereoselective α-C-C coupling of 1a by enhancing the production of α-dialkylamino radicals and the isomerization of N,N,N',N'-tetraethylbutane-2,3-diamine (4a).
Oxidation of Sulfides with a Silica-Supported Peracid in Supercritical Carbon Dioxide under Flow Conditions: Tuning Chemoselectivity with Pressure
Supercritical carbon dioxide is a convenient medium for performing the selective oxidation of sulfides 1 to either sulfoxides 2 or sulfones 3 with [2-percarboxyethyl]-functionalized silica (4) under flow conditions. The chemoselectivity of the reaction, which results from the different diffusion rates of sulfide and sulfoxide over the reagent bed, can be controlled by adjusting the pressure and the hydration of the silica surface as both the solvating power of the mobile phase and the surface activity of the stationary phase determine the migration rates of sulfide 1 and sulfoxide 2 over the supported peroxide. The results elucidate the impact of surface phenomena on the course of chemical …
Mechanism of the Oxidation of Sulfides by Dioxiranes. 1. Intermediacy of a 10-S-4 Hypervalent Sulfur Adduct
Earlier studies established that dimethyldioxirane (1a) reacts with sulfides 2 in two consecutive concerted electrophilic oxygen-transfer steps to give first sulfoxides 3 and then sulfones 4. The same sequential electrophilic oxidation model was assumed for the reaction of sulfides 2 with the strongly electrophilic methyl(trifluoromethyl)dioxirane (1b). In this paper we report on a systematic and general study on the mechanism of the reaction of simple sulfides 2 with DMDO (1a) and TFDO (1b) which provides clear evidence for the involvement of hypervalent sulfur species in the oxidation process. In the oxidation of sulfides 2a-c, diphenyl sulfide (2d), para-substituted aryl methyl sulfides …
Reactions of Peroxides on Solid Surfaces
This article describes the different roles that solid surfaces play in heterogeneous reactions involving peroxides, namely, (i) the solid surface interacts with the peroxide in the absence of any other substrate, (ii) the solid surface promotes the reaction activating either the peroxide or the substrate, (iii) the peroxide forms part of the solid active surface, and (iv) the substrate forms part of the active surface. The chapter covers reactions involving peroxides or discrete peroxydic transient species on solid surfaces or at solid–liquid and solid–gas interfaces, and provides general descriptions of different solid materials, details on reaction conditions, and synthetic procedures for…
Silver-Catalyzed C-C Bond Formation between Methane and Ethyl Diazoacetate in Supercritical CO2
Even in the context of hydrocarbons’ general resistance to selective functionalization, methane’s volatility and strong bonds pose a particular challenge. We report here that silver complexes bearing perfluorinated indazolylborate ligands catalyze the reaction of methane (CH4) with ethyl diazoacetate (N2CHCO2Et) to yield ethyl propionate (CH3CH2CO2Et). The use of supercritical carbon dioxide (scCO2) as the solvent is key to the reaction’s success. Although the catalyst is only sparingly soluble in CH4/CO2 mixtures, optimized conditions presently result in a 19% yield of ethyl propionate (based on starting quantity of the diazoester) at 40°C over 14 hours.
Photoiodocarboxylation of Activated C═C Double Bonds with CO2 and Lithium Iodide
The photolysis at 254 nm of lithium iodide and olefins 1 carrying an electron-withdrawing Z-substituent in CO2-saturated (1 bar) anhydrous acetonitrile at room temperature produces the atom efficient and transition metal-free photoiodocarboxylation of the C═C double bond. The reaction proceeds well for terminal olefins 1 to form the new C-I and C-C σ-bonds at the α and β-positions of the Z-substituent, respectively, and is strongly inhibited by polar protic solvents or additives. The experimental results suggest that the reaction channels through the radical anion [CO2•-] in acetonitrile, yet involves different intermediates in aqueous medium. The stabilizing ion-quadrupole and electron don…
Oppenauer Oxidation of Secondary Alcohols with 1,1,1-Trifluoroacetone as Hydride Acceptor
1,1,1-Trifluoroacetone (2a) reacts as a hydride-acceptor in the Oppenauer oxidation of secondary alcohols (1) in the presence of diethylethoxyaluminum. The oxidant allows for selective oxidation of secondary alcohols in the presence of primary alcohols.
Conformational mobility of thianthrene-5-oxide.
[reaction: see text] Data on the apparent dipole moment of thianthrene-5-oxide (1) and (1)H NMR spectra in different solvents support the conformational mobility of 1, which flaps between two limit boat conformations with the sulfinyl group in pseudoequatorial and pseudoaxial positions, respectively. The conformational equilibrium of 1 occurs too fast for the (1)H NMR (500 MHz) time-scale even at -130 degrees C, and the equilibrium constant has not been determined. The apparent dipole moments of 1 in n-hexane and 1,4-dioxane and the (1)H NMR spectra of 1 and the model compounds cis- and trans-thianthrene-5,10-dioxides (2) and thianthrene (5) in different solvents and at various temperatures…
Mechanism of the oxidation of sulfides by dioxiranes: conformational mobility and transannular interaction in the oxidation of thianthrene 5-oxide.
The detailed study of the oxidation of thianthrene 5-oxide (1) with methyl(trifluoromethyl)dioxirane (5b) in different solvents and in the presence of (18)O isotopic tracers is reported. Thianthrene 5-oxide (1) is a flexible molecule in solution, and this property allows for transannular interaction of the sulfoxide group with the expected zwitterionic 7 and hypervalent 10-S-4 sulfurane 9 intermediates formed in the oxidation and biases the course of the reaction toward the monooxygenation pathway.
Silica-supported HgSO4/H2SO4: a convenient reagent for the hydration of alkynes under mild conditions
Abstract The silica-supported aqueous-phase catalyst (SAPC) approach has proven convenient for efficiently performing the hydration of alkynes with HgSO 4 /H 2 SO 4 to give the corresponding carbonyl compounds in dichloromethane under mild conditions. The use of this solid reagent significantly improves the reaction work-up as it merely involves filtering and evaporating the solvent.
Inverse solvent effects in the heterogeneous and homogeneous epoxidation of cis-2-heptene with [2-percarboxyethyl]-functionalized silica and meta-chloroperbenzoic acid.
The rate constants for the epoxidation of cis-2-heptene with [2-percarboxyethyl]-functionalized silica (1a) and meta-chloroperbenzoic acid (mCPBA) (1b) in different solvents have been determined at temperatures in the −10 to 40 °C range. The heterogeneous epoxidation exhibits a dependence of the reaction rate on solvent polarity opposite to its homogeneous counterpart and anomalous activation parameters in n-hexane, which are interpreted in terms of the surface-promoted solvent structure at the solid–liquid interface. The results show that highly polar solvents can strongly inhibit heterogeneous reactions performed with silica-supported reagents or catalysts.
SN1 Reactions in Supercritical Carbon Dioxide in the Presence of Alcohols: the Role of Preferential Solvation
Ethanol (3b) inhibits SN1 reactions of alkyl halides 1 in supercritical carbon dioxide (scCO2) and gives no ethers as products. The unexpected behaviour of alcohols 3 in the reaction of alkyl halides 1 with 1,3-dimethoxybenzene (2) in scCO2 under different conditions is rationalised in terms of Bronsted and Lewis acid–base equilibria of reagents, intermediates, additives and products in a singular solvent characterised by: (i) the strong quadrupole and Lewis acid character of carbon dioxide, which hinders SN2 paths by strongly solvating basic solutes; (ii) the weak Lewis base character of carbon dioxide, which prevents it from behaving as a proton sink; (iii) the compressible nature of scCO…
On the ionizing properties of supercritical carbon dioxide: uncatalyzed electrophilic bromination of aromatics
Supercritical carbon dioxide (scCO2), a solvent with a zero dipole moment, low dielectric constant, and no hydrogen bonding behavior, is a suitable medium to perform the uncatalyzed electrophilic bromination of weakly activated aromatics with no interference of radical pathways. The ability of scCO2 to promote these reactions matches those of strongly ionizing solvents such as aqueous acetic and trifluoroacetic acids. Conversely, carbon tetrachloride, with similar polarity parameters to scCO2, leads exclusively to side chain functionalization. The strong quadrupole moment, and the acidic, but non basic, Lewis character of carbon dioxide, are proposed as key factors for the singular performa…