0000000000525653

AUTHOR

Victor V. Flambaum

showing 73 related works from this author

HfF+ as a candidate to search for the nuclear weak quadrupole moment

2018

Nuclei with a quadrupole deformation, such as $^{177}\mathrm{Hf}$ have enhanced weak quadrupole moment which induces the tensor weak electron-nucleus interaction in atoms and molecules. Corresponding parity-non-conserving (PNC) effect is strongly enhanced in the ${}^{3}{\mathrm{\ensuremath{\Delta}}}_{1}$ electronic state of the $^{177}\mathrm{HfF}^{+}$ cation which has very close opposite parity levels mixed by this tensor interaction. In the present paper we perform relativistic many-body calculations of this PNC effect. It is shown that the tensor weak interaction induced by the weak quadrupole moment gives the dominating contribution to the PNC effects in $^{177}\mathrm{HfF}^{+}$ which s…

Chemical Physics (physics.chem-ph)PhysicsAtomic Physics (physics.atom-ph)Nuclear TheoryAtoms in moleculesFOS: Physical sciencesParity (physics)Weak interaction01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmasPhysics - Chemical Physics0103 physical sciencesQuadrupoleNeutronPhysics::Atomic PhysicsAtomic physics010306 general physicsPhysical Review A
researchProduct

Calculation of atomic spectra and transition amplitudes for superheavy element Db (Z=105)

2018

Atomic spectra and other properties of superheavy element dubnium (Db, $Z=105$) are calculated using recently developed method combining configuration interaction with perturbation theory [the CIPT method, V. A. Dzuba, J. C. Berengut, C. Harabati, and V. V. Flambaum, Phys. Rev. A 95, 012503 (2017)]. These include energy levels for low-lying states of Db and Db II, electric dipole transition amplitudes between the ground state and low-lying states of opposite parity, isotope shift for these transitions, and the ionization potential of Db. Similar calculations for Ta, which is a lighter analog of Db, are performed to control the accuracy of the calculations.

PhysicsDubniumAtomic Physics (physics.atom-ph)FOS: Physical scienceschemistry.chemical_elementConfiguration interaction7. Clean energy01 natural sciences010305 fluids & plasmasPhysics - Atomic PhysicsAmplitudechemistry0103 physical sciencesPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)Atomic physicsElectric dipole transitionIonization energyPerturbation theory010306 general physicsGround stateSpectroscopyNuclear Experiment
researchProduct

Fast apparent oscillations of fundamental constants

2019

Precision spectroscopy of atoms and molecules allows one to search for and to put stringent limits on the variation of fundamental constants. These experiments are typically interpreted in terms of variations of the fine structure constant $\alpha$ and the electron to proton mass ratio $\mu=m_e/m_p$. Atomic spectroscopy is usually less sensitive to other fundamental constants, unless the hyperfine structure of atomic levels is studied. However, the number of possible dimensionless constants increases when we allow for fast variations of the constants, where "fast" is determined by the time scale of the response of the studied species or experimental apparatus used. In this case, the relevan…

Scale (ratio)Atomic Physics (physics.atom-ph)530 PhysicsFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyAtomic spectroscopyElectron53001 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsHyperfine structurePhysicsHigh Energy Physics::PhenomenologyAtoms in moleculesFine-structure constantSense (electronics)021001 nanoscience & nanotechnology530 PhysikHigh Energy Physics - PhenomenologyAtomic physics0210 nano-technologyDimensionless quantity
researchProduct

Isotopic variation of parity violation in atomic ytterbium: Description of the measurement method and analysis of systematic effects

2019

We present a detailed description of experimental studies of the parity violation effect in an isotopic chain of atomic ytterbium (Yb), whose results were reported in a recent paper [Antypas et al., Nat. Phys. 15, 120 (2019)]. We discuss the principle of these measurements, made on the Yb $6{s}^{2} {}^{1}{S}_{0}\ensuremath{\rightarrow}5d6s ^{3}D_{1}$ optical transition at 408 nm, describe the experimental apparatus, and give a detailed account of our studies of systematic effects in the experiment. Our results offer a direct observation of the isotopic variation in the atomic parity violation effect, a variation which is in agreement with the prediction of the standard model. These measurem…

YtterbiumPhysicsMeasurement methodchemistryOptical transitionDirect observationchemistry.chemical_elementParity (physics)Atomic physicsBosonPhysical Review A
researchProduct

Searching for Earth/Solar axion halos

2020

We discuss the sensitivity of the present and near-future axion dark matter experiments to a halo of axions or axion-like particles gravitationally bound to the Earth or the Sun. The existence of such halos, assuming they are formed, renders a significant gain in the sensitivity of axion searches while satisfying all the present experimental bounds. The structure and coherence properties of these halos also imply novel signals, which can depend on the latitude or orientation of the detector. We demonstrate this by analysing the sensitivity of several distinct types of axion dark matter experiments.

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)Physics::Instrumentation and DetectorsDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsAxionAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyCP violationBeyond Standard Modellcsh:QC770-798CP violationHaloEarth (classical element)Astrophysics - Cosmology and Nongalactic AstrophysicsCoherence (physics)Journal of High Energy Physics
researchProduct

Isotope shift, non-linearity of King plots and the search for new particles

2017

We derive a mean-field relativistic formula for the isotope shift of an electronic energy level for arbitrary angular momentum; we then use it to predict the spectra of superheavy metastable neutron-rich isotopes belonging to the hypothetical island of stability. Our results may be applied to the search for superheavy atoms in astrophysical spectra using the known values of the transition frequencies for the neutron deficient isotopes produced in the laboratory. An example of a relevant astrophysical system may be the spectra of the Przybylski's star where superheavy elements up to Z=99 have been possibly identified. In addition, it has been recently suggested to use the measurements of Kin…

PhysicsAngular momentumNuclear TheoryField (physics)010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesScalar boson01 natural sciencesIsland of stabilityPhysics - Atomic PhysicsStandard ModelNuclear physicsNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Astrophysics - Solar and Stellar AstrophysicsPolarizability0103 physical sciences010306 general physicsRelativistic quantum chemistryNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)Boson
researchProduct

Prediction of quantum many-body chaos in protactinium atom

2017

Energy level spectrum of protactinium atom (Pa, Z=91) is simulated with a CI calculation. Levels belonging to the separate manifolds of a given total angular momentum and parity $J^\pi$ exhibit distinct properties of many-body quantum chaos. Moreover, an extremely strong enhancement of small perturbations takes place. As an example, effective three-electron interaction is investigated and found to play a significant role in the system. Chaotic properties of the eigenstates allow one to develop a statistical theory and predict probabilities of different processes in chaotic systems.

PhysicsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsChaoticFOS: Physical sciencesParity (physics)Configuration interaction01 natural sciencesQuantum chaosPhysics - Atomic PhysicsTotal angular momentum quantum numberQuantum mechanics0103 physical sciencesStatistical theory010306 general physicsQuantumEigenvalues and eigenvectors
researchProduct

Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy.

2018

Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard-model particles. Here we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.

PhysicsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsFOS: Physical sciencesGeneral Physics and AstronomyElectron01 natural sciencesPhysics - Atomic Physics3. Good healthStandard ModelNuclear physicsAntiprotonAntimatter0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsPhysics::Atomic Physics010306 general physicsSpin (physics)Antiprotonic heliumHyperfine structureBosonPhysical review letters
researchProduct

Enhanced nuclear Schiff moment in stable and metastable nuclei

2019

Nuclei with static intrinsic octupole deformation or a soft octupole vibrational mode lead to strongly enhanced collective nuclear Schiff? moments. Interaction between electrons and these Schiff moments produce enhanced time reversal (T) and parity (P) violating electric dipole moments (EDM) in atoms and molecules. Corresponding experiments may be used to test CP-violation theories predicting T,P-violating nuclear forces and to search for axions. Nuclear octupole deformations are predicted in many short lived isotopes. This paper investigates octupole deformations in stable and very long lifetime nuclei such as 153Eu, 235U, 237Np and 227Ac, which can ease atomic experiments substantially. T…

PhysicsNuclear TheoryAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsNuclear TheoryFOS: Physical sciences01 natural sciencesPhysics - Atomic Physics3. Good healthNuclear Theory (nucl-th)High Energy Physics - PhenomenologyDipoleHigh Energy Physics - Phenomenology (hep-ph)Metastability0103 physical sciencesPhysics::Atomic and Molecular ClustersNuclear forceMoleculePhysics::Atomic PhysicsAtomic physicsNuclear Experiment010306 general physicsAxionNuclear theoryPhysical Review C
researchProduct

Limiting P-odd interactions of cosmic fields with electrons, protons and neutrons

2014

We propose methods for extracting limits on the strength of P-odd interactions of pseudoscalar and pseudovector cosmic fields with electrons, protons and neutrons. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by standard-model extensions. Calculations of parity nonconserving amplitudes and atomic electric dipole moments induced by these fields are performed for H, Li, Na, K, Rb, Cs, Ba+, Tl, Dy, Fr, and Ra+. From these calculations and existing measurements in Dy, Cs and Tl, we constrain the interaction strengths of the parity-violating static pseudovector cosmic field to be 7*10^(-15) GeV with an electron, a…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)ProtonNuclear TheoryAtomic Physics (physics.atom-ph)Dark matterNuclear TheoryGeneral Physics and AstronomyFOS: Physical sciencesElectronSpace Physics (physics.space-ph)Physics - Atomic PhysicsNuclear physicsPseudoscalarNuclear Theory (nucl-th)DipoleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Physics - Space PhysicsNeutronPseudovectorAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Atomic Ionization by Scalar Dark Matter and Solar Scalars

2021

We calculate the cross-sections of atomic ionization by absorption of scalar particles in the energy range from a few eV to 100 keV. We consider both nonrelativistic particles (dark matter candidates) and relativistic particles which may be produced inside Sun. We provide numerical results for atoms relevant for direct dark matter searches (O, Na, Ar, Ca, Ge, I, Xe, W and Tl). We identify a crucial flaw in previous calculations and show that they overestimated the ionization cross sections by several orders of magnitude due to violation of the orthogonality of the bound and continuum electron wave functions. Using our computed cross-sections, we interpret the recent data from the Xenon1T ex…

PhysicsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsScalar (mathematics)Dark matterFOS: Physical sciencesGeneral Physics and AstronomyElectronCoupling (probability)01 natural sciencesPhysics - Atomic Physics3. Good healthNuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Ionization0103 physical sciencesContinuum (set theory)Absorption (logic)010306 general physicsAxionPhysical Review Letters
researchProduct

Intrinsic quantum chaos and spectral fluctuations within the protactinium atom

2018

Physicschemistry0103 physical sciencesProtactiniumchemistry.chemical_elementAtom (order theory)Atomic physics010306 general physics01 natural sciencesQuantum chaos010305 fluids & plasmasPhysical Review A
researchProduct

Limits on gravitational Einstein Equivalence Principle violation from monitoring atomic clock frequencies during a year

2016

Sun's gravitation potential at earth varies during a year due to varying Earth-Sun distance. Comparing the results of very accurate measurements of atomic clock transitions performed at different time in the year allows us to study the dependence of the atomic frequencies on the gravitational potential. We examine the measurement data for the ratio of the frequencies in Hg$^+$ and Al$^+$ clock transitions and absolute frequency measurements (with respect to caesium frequency standard) for Dy, Sr, H, hyperfine transitions in Rb and H, and obtain significantly improved limits on the values of the gravity related parameter of the Einstein Equivalence Principle violating term in the Standard Mo…

Physics010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesFine-structure constantElectron01 natural sciencesAtomic clockPhysics - Atomic PhysicsGravitationsymbols.namesakeGravitational potentialStandard-Model ExtensionQuantum mechanics0103 physical sciencessymbols010306 general physicsHamiltonian (quantum mechanics)Hyperfine structure
researchProduct

Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy

2018

Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…

IN-BEAMNuclear TheoryGeneral Physics and Astronomychemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]DROPLET-MODEL01 natural sciencesEffective nuclear chargeNO-2540103 physical sciencesNeutronSUPERHEAVY ELEMENTS010306 general physicsSpectroscopyMASSESNuclear ExperimentHyperfine structurePhysicsMagnetic momentNUCLEI010308 nuclear & particles physicsPRODUCTSchemistryQuadrupoleUPDATENobeliumAtomic physicsSHIPNuclear density
researchProduct

Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA signal

2016

We revisit the WIMP-type dark matter scattering on electrons that results in atomic ionization and can manifest itself in a variety of existing direct-detection experiments. Unlike the WIMP-nucleon scattering, where current experiments probe typical interaction strengths much smaller than the Fermi constant, the scattering on electrons requires a much stronger interaction to be detectable, which in turn requires new light force carriers. We account for such new forces explicitly, by introducing a mediator particle with scalar or vector couplings to dark matter and to electrons. We then perform state-of-the-art numerical calculations of atomic ionization relevant to the existing experiments.…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)010308 nuclear & particles physicsScatteringPhysics beyond the Standard ModelDark matterScalar (mathematics)FOS: Physical sciencesElectron01 natural sciencesHigh Energy Physics - ExperimentPhysics - Atomic PhysicsComputational physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Ionization0103 physical sciencesAtomic physics010306 general physicsRelativistic quantum chemistryAstrophysics - Cosmology and Nongalactic AstrophysicsFermi Gamma-ray Space TelescopePhysical Review D
researchProduct

New generation low-energy probes for ultralight axion and scalar dark matter

2017

We present a brief overview of a new generation of high-precision laboratory and astrophysical measurements to search for ultralight (sub-eV) axion, axion-like pseudoscalar and scalar dark matter, which form either a coherent condensate or topological defects (solitons). In these new detection methods, the sought effects are linear in the interaction constant between dark matter and ordinary matter, which is in stark contrast to traditional searches for dark matter, where the sought effects are quadratic or higher order in the underlying interaction constants (which are extremely small).

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Nuclear TheoryAtomic Physics (physics.atom-ph)Dark matterGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesPhysics - Atomic PhysicsTopological defectNuclear Theory (nucl-th)Quadratic equationHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsAxionPhysics010308 nuclear & particles physicsAstronomy and AstrophysicsPseudoscalarHigh Energy Physics - PhenomenologyStrong CP problemSolitonAstrophysics - Cosmology and Nongalactic AstrophysicsCoherence (physics)
researchProduct

Comment on "Axion induced oscillating electric dipole moments"

2017

In the recent work [Phys. Rev. D 91, 111702(R) (2015)], C. Hill concludes that the axion electromagnetic anomaly induces an oscillating electron electric dipole moment of frequency $m_a$ and strength $\sim 10^{-32}~e$ cm, in the limit $v/c \to 0$ for the axion field. Here, we demonstrate that a proper treatment of this problem in the lowest order yields $\textit{no}$ electric dipole moment of the electron in the same limit. Instead, oscillating electric dipole moments of atoms and molecules are produced by different mechanisms.

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)Atomic Physics (physics.atom-ph)010308 nuclear & particles physicsFOS: Physical sciencesOrder (ring theory)Electron01 natural sciencesElectron electric dipole momentPhysics - Atomic PhysicsDipoleElectric dipole momentHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanics0103 physical sciencesAnomaly (physics)Atomic physics010306 general physicsAxionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Ultralight dark photon as a model for early universe dark matter

2019

Dark photon is a massive vector field which interacts only with the physical photon through the kinetic mixing. This coupling is assumed to be weak so that the dark photon becomes almost unobservable in processes with elementary particles, but can serve as a dark matter particle. We argue that in very early Universe ($z>3000$) this vector field may have the equation of state of radiation ($w=1/3$) but later behaves as cold dark matter ($w=0$). This may slightly change the expansion rate of the Universe at early time and reduce the value of the sound horizon of baryon acoustic oscillations (standard ruler). As a result, in this model the value of the Hubble constant appears to be larger than…

PhysicsParticle physicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsEquation of state (cosmology)Dark matterOrder (ring theory)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsCoupling (probability)01 natural sciencesDark photonsymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencessymbolsBaryon acoustic oscillations010306 general physicsHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Electron-interacting dark matter: Implications from DAMA/LIBRA-phase2 and prospects for liquid xenon detectors and NaI detectors

2019

We investigate the possibility for the direct detection of low-mass (GeV scale) weakly interacting massive particles (WIMP) dark matter in scintillation experiments. Such WIMPs are typically too light to leave appreciable nuclear recoils but may be detected via their scattering off atomic electrons. In particular, the DAMA Collaboration [R. Bernabei et al., Nucl. Phys. At. Energy 19, 307 (2018)] has recently presented strong evidence of an annual modulation in the scintillation rate observed at energies as low as 1 keV. Despite a strong enhancement in the calculated event rate at low energies, we find that an interpretation in terms of electron-interacting WIMPs cannot be consistent with ex…

DAMA/LIBRACosmology and Nongalactic Astrophysics (astro-ph.CO)detector: performancePhysics::Instrumentation and DetectorsDark matterFOS: Physical scienceschemistry.chemical_elementElectron01 natural sciencesWIMP: dark matterNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)XenonWIMP0103 physical sciences010306 general physicsenhancementscintillation counterenergy: lowPhysicsScintillationxenon: liquid010308 nuclear & particles physicsatom: wave functionDAMAmodulationHigh Energy Physics - Phenomenologychemistryelectron: scatteringWeakly interacting massive particles[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]direct detection[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Event (particle physics)Astrophysics and astroparticle physicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review
researchProduct

Search for the effect of massive bodies on atomic spectra and constraints on Yukawa-type interactions of scalar particles

2016

We propose a new method to search for hypothetical scalar particles that have feeble interactions with Standard-Model particles. In the presence of massive bodies, these interactions produce a non-zero Yukawa-type scalar-field magnitude. Using radio-frequency spectroscopy data of atomic dysprosium, as well as atomic clock spectroscopy data, we constrain the Yukawa-type interactions of a scalar field with the photon, electron, and nucleons for a range of scalar-particle masses corresponding to length scales $ > 10$ cm. In the limit as the scalar-particle mass $m_\phi \to 0$, our derived limits on the Yukawa-type interaction parameters are: $\Lambda_\gamma \gtrsim 8 \times 10^{19}$ GeV, $\Lam…

Particle physicsGeneral PhysicsPhotonAtomic Physics (physics.atom-ph)General Physics and Astronomychemistry.chemical_elementFOS: Physical sciencesElectron01 natural sciencesphysics.atom-phMathematical SciencesPhysics - Atomic PhysicsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)EngineeringHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsSpectroscopyPhysics010308 nuclear & particles physicshep-exScalar (physics)Yukawa potentialhep-phHigh Energy Physics - PhenomenologychemistryPhysical SciencesDysprosiumNucleonScalar field
researchProduct

Sensitivity of Th229 nuclear clock transition to variation of the fine-structure constant

2020

Peik and Tamm [Europhys. Lett. 61, 181 (2003)] proposed a nuclear clock based on the isomeric transition between the ground state and the first excited state of thorium-229. This transition was recognized as a potentially sensitive probe of possible temporal variation of the fine-structure constant, $\ensuremath{\alpha}$. The sensitivity to such a variation can be determined from measurements of the mean-square charge radius and quadrupole moment of the different isomers. However, current measurements of the quadrupole moment are yet to achieve an accuracy high enough to resolve nonzero sensitivity. Here we determine this sensitivity using existing measurements of the change in the mean-squ…

PhysicsFine-structure constant01 natural sciences010305 fluids & plasmasCharge radiusExcited state0103 physical sciencesQuadrupoleSensitivity (control systems)Atomic physics010306 general physicsGround stateNuclear densityAnsatzPhysical Review A
researchProduct

Time reversal violating Magnetic Quadrupole Moment in heavy deformed nuclei

2018

The existence of permanent electric dipole moments (EDMs) and magnetic quadrupole moments (MQMs) violate both time reversal invariance (T) and parity (P). Following the CPT theorem they also violate combined CP symmetry. Nuclear EDMs are completely screened in atoms and molecules while interaction between electrons and MQMs creates atomic and molecular EDMs which can be measured and used to test CP-violation theories. Nuclear MQMs are produced by the nucleon-nucleon T, P-odd interaction and by nucleon EDMs. In this work we study the effect of enhancement of the nuclear MQMs due to the nuclear quadrupole deformation. Using the Nilsson model we calculate the nuclear MQMs for deformed nuclei o…

PhysicsNuclear Theory010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Atoms in moleculesHigh Energy Physics::PhenomenologyNuclear TheoryFOS: Physical sciencesParity (physics)Electron01 natural sciencesDiatomic moleculePhysics - Atomic PhysicsNuclear Theory (nucl-th)DipoleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesQuadrupolePhysics::Atomic PhysicsAtomic physics010306 general physicsNucleonQuadrupole magnetNuclear Experiment
researchProduct

Radiation from matter-antimatter annihilation in the quark nugget model of dark matter

2021

We revisit the properties of positron cloud in quark nugget (QN) model of dark matter (DM). In this model, dark matter particles are represented by compact composite objects composed of a large number of quarks or antiquarks with total baryon number $B\sim 10^{24}$. These particles have a very small number density in our galaxy which makes them "dark" to all DM detection experiments and cosmological observations. In this scenario, anti-quark nuggets play special role because they may manifest themselves in annihilation with visible matter. We study electron-positron annihilation in collisions of free electrons, hydrogen and helium gases with the positron cloud of anti-quark nuggets. We show…

PhysicsQuarkHigh Energy Astrophysical Phenomena (astro-ph.HE)AnnihilationProton010308 nuclear & particles physicsDark matterFOS: Physical sciences01 natural sciences7. Clean energyPositroniumNuclear physicsHigh Energy Physics - PhenomenologyPionPositronHigh Energy Physics - Phenomenology (hep-ph)13. Climate actionAntimatter0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Coherent axion-photon transformations in the forward scattering on atoms

2018

In certain laboratory experiments the production and/or detection of axions is due to the photon-axion transformations in a strong magnetic field. This process is coherent, and the rate of the transformation is proportional to the length $l$ and magnitude $B$ of the magnetic field squared, $\sim l^2B^2$. In the present paper, we consider coherent production of axions due to the forward scattering of photons on atoms or molecules. This process may be represented as being due to an effective electromagnetic field which converts photons to axions. We present analytical expressions for such effective magnetic and electric fields induced by resonant atomic M0 and M1 transitions, as well as give …

Electromagnetic fieldPhysicsCoupling constantPhoton010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesCoupling (probability)01 natural sciencesMagnetic fieldPhysics - Atomic PhysicsHigh Energy Physics::TheoryHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Electric field0103 physical sciencesProduction (computer science)Atomic physics010306 general physicsAxionPhysical Review
researchProduct

Resonant detection and production of axions with atoms

2018

The axions and axion-like particles can be detected via a resonant atomic or molecular transition induced by axion absorption. The signal obtained in this process is second order in the axion-electron interaction constant and hence small. In this chapter, it is demonstrated that this signal may become first order in the axion-electron interaction constant if we allow the interference between the axion-induced transition amplitude and the transition amplitude induced by the electromagnetic radiation. Additionally, we show that the conventional scheme of producing axions from photons in a magnetic field may be improved if the field is replaced by an atomic medium in which photons scattering …

PhysicsNuclear and High Energy PhysicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsForward scatterHigh Energy Physics::PhenomenologyAstronomy and Astrophysics01 natural sciencesSignalAtomic and Molecular Physics and OpticsHigh Energy Physics::TheoryInterference (communication)0103 physical sciencesEffective lagrangianAtomic physics010306 general physicsAbsorption (electromagnetic radiation)AxionInternational Journal of Modern Physics A
researchProduct

Theoretical study of the electron structure of superheavy elements with an open 6d shell: Sg, Bh, Hs, and Mt

2019

We use recently developed efficient versions of the configuration interaction method to perform {\em ab initio} calculations of the spectra of superheavy elements seaborgium (Sg, $Z=106$), bohrium (Bh, $Z=107$), hassium (Hs, $Z=108$) and meitnerium (Mt, $Z=109$). We calculate energy levels, ionization potentials, isotope shifts and electric dipole transition amplitudes. Comparison with lighter analogs reveals significant differences caused by strong relativistic effects in superheavy elements. Very large spin-orbit interaction distinguishes subshells containing orbitals with a definite total electron angular momentum $j$. This effect replaces Hund's rule holding for lighter elements.

PhysicsAtomic Physics (physics.atom-ph)FOS: Physical scienceschemistry.chemical_elementBohriumConfiguration interaction7. Clean energy01 natural sciencesHassiumPhysics - Atomic Physics010305 fluids & plasmasAtomic orbitalchemistryAb initio quantum chemistry methodsSeaborgium0103 physical sciencesPhysics::Atomic PhysicsAtomic physicsElectric dipole transition010306 general physicsRelativistic quantum chemistryPhysical Review A
researchProduct

Experimental Constraint on Axionlike Particles over Seven Orders of Magnitude in Mass

2021

We use our recent electric dipole moment (EDM) measurement data to constrain the possibility that the HfF+ EDM oscillates in time due to interactions with candidate dark matter axionlike particles (ALPs). We employ a Bayesian analysis method which accounts for both the look-elsewhere effect and the uncertainties associated with stochastic density fluctuations in the ALP field. We find no evidence of an oscillating EDM over a range spanning from 27 nHz to 400 mHz, and we use this result to constrain the ALP-gluon coupling over the mass range 10-22-10-15 eV. This is the first laboratory constraint on the ALP-gluon coupling in the 10-17-10-15 eV range, and the first laboratory constraint to pr…

PhysicsRange (particle radiation)Field (physics)Dark matterGeneral Physics and AstronomyOrders of magnitude (numbers)Coupling (probability)01 natural sciencesPhysics::GeophysicsConstraint (information theory)Electric dipole moment0103 physical sciencesPhysics::Atomic PhysicsAtomic physics010306 general physics
researchProduct

Nuclear anapole moment interaction in BaF from relativistic coupled-cluster theory

2018

We present high accuracy relativistic coupled cluster calculations of the P-odd interaction coefficient $W_A$ describing the nuclear anapole moment effect on the molecular electronic structure. The molecule under study, BaF, is considered a promising candidate for the measurement of the nuclear anapole moment, and the preparation for the experiment is now underway [Altunas et al., Phys. Rev. Lett. 120, 142501 (2018)]. Influence of various computational parameters (size of the basis set, treatment of relativistic effects, and treatment of electron correlation) on the calculated $W_A$ coefficient is investigated and a recommended value of 147.7 Hz with an estimated uncertainty of 1.5% is prop…

ATOMIC PARITY NONCONSERVATIONDIATOMIC-MOLECULESP-ODDVIOLATIONAtomic Physics (physics.atom-ph)Nuclear TheoryDENSITY FUNCTIONALSFOS: Physical sciences01 natural sciences010305 fluids & plasmasPhysics - Atomic PhysicsENHANCEMENTMolecular electronic structure0103 physical sciencesIMPLEMENTATIONNuclear Experiment010306 general physicsBasis setPhysicsElectronic correlationELECTRIC-FIELD GRADIENTSDiatomic moleculeWEAK-INTERACTIONSCoupled clusterMoment (physics)Atomic physicsRelativistic quantum chemistryAPPROXIMATIONPhysical Review A
researchProduct

Dependence of atomic parity-violation effects on neutron skins and new physics

2019

We estimate the relative contribution of nuclear structure and new physics couplings to the parity non-conserving spin-independent effects in atomic systems, for both single isotopes and isotopic ratios. General expressions are presented to assess the sensitivity of isotopic ratios to neutron skins and to couplings beyond standard model at tree level. The specific coefficients for these contributions are calculated assuming Fermi distribution for proton and neutron nuclear densities for isotopes of Cs, Ba, Sm, Dy, Yb, Pb, Fr, and Ra. The present work aims to provide a guide to the choice of the best isotopes and pairs of isotopes for conducting atomic PNC measurements.

PhysicsIsotopeAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsPhysics beyond the Standard ModelNuclear TheoryNuclear structureFOS: Physical sciencesParity (physics)7. Clean energy01 natural sciencesPhysics - Atomic PhysicsNuclear physicssymbols.namesake0103 physical sciencessymbolsFermi–Dirac statisticsNeutronPhysics::Atomic Physics010306 general physicsNuclear Experiment
researchProduct

Using optical clock transitions in Cu II and Yb III for time-keeping and search for new physics

2021

We study the $^1$S$_0 - ^3$D$_2$ and $^1$S$_0 - ^3$D$_3$ transitions in Cu II and the $^1$S$_0 - ^3$P$^{\rm o}_2$ transition in Yb III as possible candidates for the optical clock transitions. A recently developed version of the configuration (CI) method, designed for a large number of electrons above closed-shell core, is used to carry out the calculation. We calculate excitation energies, transition rates, lifetimes, scalar static polarizabilities of the ground and clock states, and blackbody radiation shift. We demonstrate that the considered transitions have all features of the clock transition leading to prospects of highly accurate measurements. Search for new physics, such as time va…

PhysicsAtomic Physics (physics.atom-ph)Physics beyond the Standard ModelScalar (mathematics)FOS: Physical sciencesElectronConfiguration interaction01 natural sciences7. Clean energy010305 fluids & plasmasPhysics - Atomic Physics0103 physical sciencesClock transitionOptical clockBlack-body radiationAtomic physics010306 general physicsExcitation
researchProduct

Search for CP-violating nuclear magnetic quadrupole moment using the LuOH+ cation

2020

The time-reversal and spatial parity violating interaction of the nuclear magnetic quadrupole moment (MQM) of the 175Lu and 176Lu nuclei with electrons in the molecular cation LuOH+ is studied. The resulting effect is expressed in terms of fundamental parameters, such as quantum chromodynamics angle θ⎯⎯, quark electric dipole moment (EDM), and chromo-EDM. For this, we have estimated the magnetic quadrupole moments of 175Lu and 176Lu nuclei and calculated the molecular constant that characterizes the interaction of the MQM with electrons in the considered molecules. Additionally, we predict the hyperfine structure constants for the ground electronic state of LuOH+. In the molecular calculati…

QuarkNuclear TheoryAtomic Physics (physics.atom-ph)Nuclear TheoryFOS: Physical sciencesGeneral Physics and AstronomyElectron010402 general chemistry01 natural sciencesPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPhysics::Atomic PhysicsPhysical and Theoretical ChemistryNuclear ExperimentQuadrupole magnetHyperfine structurePhysicsQuantum chromodynamics010304 chemical physicsHigh Energy Physics::PhenomenologyParity (physics)0104 chemical sciencesHigh Energy Physics - PhenomenologyElectric dipole momentAtomic physicsRelativistic quantum chemistry
researchProduct

Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark matter detection

2015

We outline new laser interferometer measurements to search for variation of the electromagnetic fine-structure constant $\alpha$ and particle masses (including a non-zero photon mass). We propose a strontium optical lattice clock -- silicon single-crystal cavity interferometer as a novel small-scale platform for these new measurements. Multiple passages of a light beam inside an interferometer enhance the effects due to variation of the fundamental constants by the mean number of passages ($N_{\textrm{eff}} \sim 10^2$ for a large-scale gravitational-wave detector, such as LIGO, Virgo, GEO600 or TAMA300, while $N_{\textrm{eff}} \sim 10^5$ for a strontium clock -- silicon cavity interferomete…

Physics - Instrumentation and DetectorsPhotonField (physics)Atomic Physics (physics.atom-ph)Dark matterPhysics::OpticsFOS: Physical sciences01 natural sciencesPhysics - Atomic Physicslaw.inventionOpticsHigh Energy Physics - Phenomenology (hep-ph)law0103 physical sciencesAstronomical interferometer010306 general physicsPhysics010308 nuclear & particles physicsbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)LaserGEO600LIGOHigh Energy Physics - PhenomenologyInterferometrybusinessPhysics - OpticsOptics (physics.optics)
researchProduct

Theoretical study of YbOH173 to search for the nuclear magnetic quadrupole moment

2019

A $CP$-violating interaction of the nuclear magnetic quadrupole moment (MQM) with electrons in the ytterbium monohydroxide molecule $^{173}\mathrm{YbOH}$ is considered. Both the MQM of the $^{173}\mathrm{Yb}$ nucleus and the molecular interaction constant ${W}_{M}$ are estimated. Electron correlation effects are taken into account within the relativistic Fock-space coupled-cluster method. Results are interpreted in terms of the strength constants of $CP$-violating nuclear forces, neutron dipole moment (EDM), QCD vacuum angle $\ensuremath{\theta}$, quark EDMs, and chromo-EDMs.

QuarkPhysicsElectronic correlationNuclear TheoryHigh Energy Physics::PhenomenologyQCD vacuumElectron01 natural sciences010305 fluids & plasmasDipole0103 physical sciencesNuclear forceNeutronPhysics::Atomic PhysicsAtomic physicsNuclear Experiment010306 general physicsQuadrupole magnetPhysical Review A
researchProduct

Resonance photoproduction of pionic atoms at the proposed Gamma Factory

2021

We present a possibility of direct resonance production of pionic atoms (Coulomb bound states of a negative pion and a nucleus) with a rate of up to $\ensuremath{\approx}{10}^{10}$ per second using the gamma-ray beams from the Gamma Factory.

Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryResonanceApprox7. Clean energy01 natural sciencesNuclear physicsPion0103 physical sciencesBound stateCoulombPhysics::Accelerator PhysicsProduction (computer science)Physics::Atomic PhysicsNuclear Experiment010306 general physicsNuclear theoryPhysical Review C
researchProduct

Revisiting spin-dependent forces mediated by new bosons : potentials in the coordinate-space representation for macroscopic- and atomic-scale experim…

2019

The exchange of spin-0 or spin-1 bosons between fermions or spin-polarised macroscopic objects gives rise to various spin-dependent potentials. We derive the coordinate-space non-relativistic potentials induced by the exchange of such bosons, including contact terms that can play an important role in atomic-scale phenomena, and correct for errors and omissions in the literature. We summarise the properties of the potentials and their relevance for various types of experiments. These potentials underpin the interpretation of experiments that search for new bosons, including spectroscopy, torsion-pendulum measurements, magnetometry, parity nonconservation and electric dipole moment experiment…

PhysicsAtomic Physics (physics.atom-ph)Physics beyond the Standard ModelFOS: Physical sciencesParity (physics)Fermion01 natural sciencesAtomic units3. Good health010305 fluids & plasmasPhysics - Atomic PhysicsElectric dipole momentTheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesCP violationCoordinate space010306 general physicsBoson
researchProduct

Interference-assisted resonant detection of axions

2018

Detection schemes for the quantum chromodynamics axions and other axion-like particles in light-shining-through-a-wall (LSW) experiments are based on the conversion of these particles into photons in a magnetic field. An alternative scheme may involve the detection via a resonant atomic or molecular transition induced by resonant axion absorption. The signal obtained in this process is second order in the axion-electron interaction constant but may become first order if we allow interference between the axion-induced transition amplitude and the transition amplitude induced by the electromagnetic radiation that produces the axions.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonAtomic Physics (physics.atom-ph)Physics::Instrumentation and DetectorsFOS: Physical sciencesInterference (wave propagation)01 natural sciencesSignalElectromagnetic radiationPhysics - Atomic PhysicsHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAbsorption (electromagnetic radiation)010303 astronomy & astrophysicsAxionPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsComputational physicsMagnetic fieldHigh Energy Physics - PhenomenologyAmplitudeSpace and Planetary ScienceAstrophysics - Cosmology and Nongalactic AstrophysicsPhysics of the Dark Universe
researchProduct

Electronic structure of the ytterbium monohydroxide molecule to search for axionlike particles

2021

Recently, the YbOH molecule has been suggested as a candidate to search for the electron electric dipole moment (eEDM), which violates spatial parity ($P$) and time-reversal ($T$) symmetries [I. Kozyryev and N. R. Hutzler, Phys. Rev. Lett. 119, 133002 (2017)]. In the present paper, we show that the same system can be used to measure coupling constants of the interaction of electrons and nucleus mediated by axionlike particles. The electron-nucleus interaction produced by the axion exchange can contribute to a $T,P$-violating EDM of the whole molecular system. We express the corresponding $T,P$-violating energy shift produced by this effect in terms of the axion mass and product of the axion…

High Energy Physics - TheoryChemical Physics (physics.chem-ph)PhysicsCoupling constantYtterbiumAtomic Physics (physics.atom-ph)High Energy Physics::PhenomenologyFOS: Physical scienceschemistry.chemical_elementParity (physics)ElectronElectronic structure01 natural sciencesElectron electric dipole momentPhysics - Atomic Physics010305 fluids & plasmasHigh Energy Physics - Theory (hep-th)chemistryPhysics - Chemical Physics0103 physical sciencesMoleculeAtomic physics010306 general physicsAxion
researchProduct

Atomic and molecular transitions induced by axions via oscillating nuclear moments

2020

The interaction of standard model's particles with the axionic Dark Matter field may generate oscillating nuclear electric dipole moments (EDMs), oscillating nuclear Schiff moments and oscillating nuclear magnetic quadrupole moments (MQMs) with a frequency corresponding to the axion's Compton frequency. Within an atom or a molecule an oscillating EDM, Schiff moment or MQM can drive transitions between atomic or molecular states. The excitation events can be detected, for example, via subsequent fluorescence or photoionization. Here we calculate the rates of such transitions. If the nucleus has octupole deformation or quadrupole deformation then the transition rate due to Schiff moment and M…

PhysicsPhoton010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Nuclear TheoryFOS: Physical sciencesPhotoionization01 natural sciences530Physics - Atomic PhysicsDipoleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesQuadrupoleMoment (physics)Atomddc:530Physics::Atomic PhysicsAtomic physics010306 general physicsAxionExcitation
researchProduct

Parity-violating interactions of cosmic fields with atoms, molecules, and nuclei: Concepts and calculations for laboratory searches and extracting li…

2014

We propose methods and present calculations that can be used to search for evidence of cosmic fields by investigating the parity-violating effects, including parity nonconservation amplitudes and electric dipole moments, that they induce in atoms. The results are used to constrain important fundamental parameters describing the strength of the interaction of various cosmic fields with electrons, protons, and neutrons. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by standard-model extensions. Existing parity nonconservation experiments in Cs, Dy, Yb, and Tl are combined with our calculations to directly place …

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Nuclear TheoryAtomic Physics (physics.atom-ph)Dark matterFOS: Physical sciencesCosmic rayElectron01 natural sciencesPhysics - Atomic PhysicsNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Physics - Space Physics0103 physical sciencesNeutron010306 general physicsNuclear ExperimentPseudovectorPhysics010308 nuclear & particles physicsSpace Physics (physics.space-ph)PseudoscalarDipoleHigh Energy Physics - PhenomenologyNucleonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Stadnik and Flambaum Reply:

2016

In the comment of Avelino, Sousa and Lobo [arXiv:1506.06028], it is argued, by comparing the kinetic energy of a topological defect with the overall energy of a pulsar, that the origin of the pulsar glitch phenomenon due to the passage of networks of topological defects through pulsars is faced with serious difficulties. Here, we point out that topological defects may trigger pulsar glitches within traditional scenarios, such as vortex unpinning. If the energy transfer from a topological defect exceeds the activation energy for a single pinned vortex, this may lead to an avalanche of unpinning of vortices and consequently a pulsar glitch, and therefore the source of angular momentum and ene…

PhysicsAngular momentumAstrophysics::High Energy Astrophysical PhenomenaDark matterAstrophysics::Instrumentation and Methods for AstrophysicsGeneral Physics and AstronomyAstrophysicsKinetic energy01 natural sciencesRotational energyVortexTopological defectGlitchPulsar0103 physical sciences010306 general physics010303 astronomy & astrophysicsPhysical Review Letters
researchProduct

Effects of the Lorentz invariance violation in Coulomb interaction in nuclei and atoms

2016

Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in 21Ne are used to improve the limits on the Lorentz symmetry in the photon sector, namely the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in E-28.

PhysicsPhysics::General PhysicsPhotonNuclear Theory010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Lorentz transformationIsotropyGeneral Physics and AstronomyFOS: Physical sciencesLorentz covariance01 natural sciencesPhysics - Atomic PhysicsNuclear Theory (nucl-th)symbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Orders of magnitude (time)Quantum electrodynamics0103 physical sciencesCoulombsymbolsSpeed of light010306 general physicsAnisotropy
researchProduct

Nuclear structure of lowestTh229states and time-dependent fundamental constants

2009

The electromagnetic transition between the almost degenerate $5/{2}^{+}$ and $3/{2}^{+}$ states in $^{229}\mathrm{Th}$ is deemed to be very sensitive to potential changes in the fine structure constant $\ensuremath{\alpha}$. State of the art Hartree-Fock and Hartree-Fock-Bogoliubov calculations are performed to compute the difference in Coulomb energies of the two states that determines the sensitivity of the transition frequency \ensuremath{\nu} on variations in $\ensuremath{\alpha}$. The kinetic energies are also calculated that reflect a possible variation in the nucleon or quark masses. As the two states differ mainly in the orbit occupied by the last unpaired neutron the Coulomb energy…

PhysicsNuclear and High Energy PhysicsProtonQuantum mechanicsNuclear TheoryDegenerate energy levelsCoulombNuclear structureFine-structure constantNeutronAtomic physicsKinetic energyNucleonPhysical Review C
researchProduct

Actinide and lanthanide molecules to search for strong CP-violation

2020

The existence of the fundamental CP-violating interactions inside the nucleus leads to the existence of the nuclear Schiff moment. The Schiff moment potential corresponds to the electric field localized inside the nucleus and directed along its spin. This field can interact with electrons of an atom and induce the permanent electric dipole moment (EDM) of the whole system. The Schiff moment and corresponding electric field are enhanced in the nuclei with the octupole deformation leading to the enhanced atomic EDM. There is also a few-order enhancement of the T,P-violating effects in molecules due to the existence of energetically close levels of opposite parity. We study the Schiff moment e…

Nuclear TheoryAtomic Physics (physics.atom-ph)HadronNuclear TheoryGeneral Physics and AstronomyFOS: Physical sciencesElectron01 natural sciencesPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Electric fieldPhysics - Chemical Physics0103 physical sciencesPhysics::Atomic PhysicsPhysical and Theoretical Chemistry010306 general physicsNuclear ExperimentPhysicsChemical Physics (physics.chem-ph)010308 nuclear & particles physicsDiatomic moleculeFundamental interactionElectric dipole momentHigh Energy Physics - PhenomenologyDiamagnetismCP violationAtomic physics
researchProduct

Time- and parity-violating effects of nuclear Schiff moment in molecules and solids

2020

We show that existing calculations of the interaction between nuclear Schiff moments and electrons in molecules use an inaccurate operator which gives rise to significant errors. By comparing the matrix elements of the accurate and imprecise Schiff moment operators, we calculated the correction factor as a function of the nuclear charge Z and presented corrected results for the T,P-violating interaction of the nuclear spin with the molecular axis in the TlF, RaO, PbO, TlCN, ThO, AcF molecules and in the ferroelectric solid PbTiO$_3$.

Quantum chromodynamicsPhysicsChemical Physics (physics.chem-ph)Nuclear TheoryAtomic Physics (physics.atom-ph)FOS: Physical sciencesParity (physics)01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmas3. Good healthCombinatoricsNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Physics - Chemical Physics0103 physical sciencesMolecule010306 general physicsNuclear theory
researchProduct

Probing low-mass vector bosons with parity nonconservation and nuclear anapole moment measurements in atoms and molecules

2017

In the presence of P-violating interactions, the exchange of vector bosons between electrons and nucleons induces parity-nonconserving (PNC) effects in atoms and molecules, while the exchange of vector bosons between nucleons induces anapole moments of nuclei. We perform calculations of such vector-mediated PNC effects in Cs, Ba$^+$, Yb, Tl, Fr and Ra$^+$ using the same relativistic many-body approaches as in earlier calculations of standard-model PNC effects, but with the long-range operator of the weak interaction. We calculate nuclear anapole moments due to vector boson exchange using a simple nuclear model. From measured and predicted (within the standard model) values for the PNC ampli…

PhysicsNuclear Theory010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Atoms in moleculesNuclear TheoryGeneral Physics and AstronomyFOS: Physical sciencesParity (physics)ElectronWeak interaction01 natural sciencesVector bosonPhysics - Atomic PhysicsNuclear physicsNuclear Theory (nucl-th)High Energy Physics - PhenomenologyAmplitudeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPhysics::Atomic Physics010306 general physicsNucleonNuclear ExperimentBoson
researchProduct

Axion quark nuggets and how a global network can discover them

2020

We advocate an idea that the presence of the daily and annual modulations of the axion flux on the Earth surface may dramatically change the strategy of the axion searches. Our computations are based on the so-called Axion Quark Nugget (AQN) dark matter model which was originally put forward to explain the similarity of the dark and visible cosmological matter densities $\Omega_{\rm dark}\sim \Omega_{\rm visible}$. In our framework, the population of galactic axions with mass $ 10^{-6} {\rm eV}\lesssim m_a\lesssim 10^{-3}{\rm eV}$ and velocity $\sim 10^{-3} c$ will be always accompanied by the axions with typical velocities $\sim 0.6 c$ emitted by AQNs. We formulate the broadband detection …

PhysicsQuarkeducation.field_of_studyParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)PopulationFOS: Physical sciences01 natural sciencesOmega530Physics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530010306 general physicseducationAxionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

High magnetic fields for fundamental physics

2018

Various fundamental-physics experiments such as measurement of the birefringence of the vacuum, searches for ultralight dark matter (e.g., axions), and precision spectroscopy of complex systems (including exotic atoms containing antimatter constituents) are enabled by high-field magnets. We give an overview of current and future experiments and discuss the state-of-the-art DC- and pulsed-magnet technologies and prospects for future developments.

Astrophysics and AstronomyPhysics - Instrumentation and Detectorsmagnet: designmagnetic field: highAtomic Physics (physics.atom-ph)AxionsDark matterComplex systemOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesphysics.atom-phNOPhysics - Atomic PhysicsNuclear physicsPhysics and Astronomy (all)Neutrino mass0103 physical sciencesDark matter[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Axions; Dark matter; High-field magnets; Neutrino mass; Spectroscopy; Vacuum birefringence; Physics and Astronomy (all)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Axionphysics.ins-detSpectroscopyactivity reportExotic atomPhysicsVacuum birefringence010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Polarization (waves)magnet: technology[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]3. Good healthMagnetic fieldHigh-field magnetsAntimatterMagnetAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

Time reversal invariance violation in neutron-nucleus scattering

2019

Planning and interpretation of the experiments searching for the time reversal (T) and parity (P) violation in neutron reactions require values of the matrix elements of the T,P-violating nuclear forces between nuclear compound states. We calculate the root mean square values and the ratio of the matrix elements of the T,P-violating and P-violating interactions using statistical theory based on the properties of chaotic compound states and present the results in terms of the fundamental parameters in four different forms: in terms of the constants of the contact nuclear interaction, meson exchange constants, QCD theta-term and quark chromo-EDMs. Using current limits on these parameters, we …

QuarkParticle physicsNuclear TheoryMesonAtomic Physics (physics.atom-ph)Nuclear TheoryFOS: Physical sciences01 natural sciencesPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNuclear forceNeutronNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentPhysicsQuantum chromodynamics010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyParity (physics)High Energy Physics - PhenomenologyDipoleHigh Energy Physics::Experiment
researchProduct

New Atomic Methods for Dark Matter Detection

2015

We calculate the parity and time-reversal violating effects that are induced in atoms, nuclei, and molecules by their interaction with various background cosmic fields, such as axion dark matter or dark energy.

PhysicsHistoryParticle physicsAxion Dark Matter ExperimentHot dark matterHigh Energy Physics::PhenomenologyDark matterScalar field dark matterAstrophysics::Cosmology and Extragalactic AstrophysicsComputer Science ApplicationsEducationMixed dark matterWarm dark matterLight dark matterDark fluidJournal of Physics: Conference Series
researchProduct

Ionization of atoms by slow heavy particles, including dark matter

2016

Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9 sigma annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, howe…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)010308 nuclear & particles physicsScatteringDark matterAtoms in moleculesFOS: Physical sciencesGeneral Physics and AstronomyElectron01 natural sciencesAstrophysics - Astrophysics of GalaxiesPhysics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Astrophysics of Galaxies (astro-ph.GA)IonizationWeakly interacting massive particles0103 physical sciencesBorn approximationAtomic physics010306 general physicsRelativistic quantum chemistryAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A Hypothetical Effect of the Maxwell–Proca Electromagnetic Stresses on Galaxy Rotation Curves

2019

Maxwell–Proca electrodynamics corresponding to finite photon mass causes a substantial change in the Maxwell stress tensor, and under certain circumstances, may cause electromagnetic stresses to act effectively as "negative pressure." This paper describes a model where this negative pressure imitates gravitational pull and may produce forces comparable to gravity and may even become dominant. The effect is associated with random magnetic fields with correlation lengths exceeding the photon Compton wavelength. The stresses act predominantly on the interstellar gas and cause an additional force pulling the gas toward the center and toward the galactic plane. Stars do not experience any signif…

PhysicsRotation period010504 meteorology & atmospheric sciencesDark matterAstronomy and AstrophysicsAstrophysicsGalactic planeRotation01 natural sciencesGalaxyGravitationStarsSpace and Planetary Science0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsGalaxy rotation curve0105 earth and related environmental sciencesThe Astrophysical Journal
researchProduct

Nuclear polarization effects in atoms and ions

2021

In heavy atoms and ions, nuclear structure effects are significantly enhanced due to the overlap of the electron wave functions with the nucleus. This overlap rapidly increases with the nuclear charge $Z$. We study the energy level shifts induced by the electric dipole and electric quadrupole nuclear polarization effects in atoms and ions with $Z \geq 20$. The electric dipole polarization effect is enhanced by the nuclear giant dipole resonance. The electric quadrupole polarization effect is enhanced because the electrons in a heavy atom or ion move faster than the rotation of the deformed nucleus, thus experiencing significant corrections to the conventional approximation in which they `se…

PhysicsMass numberNuclear TheoryIsotopeEnergetic neutral atomAtomic Physics (physics.atom-ph)Nuclear TheoryNuclear structureFOS: Physical sciencesElectronPolarization (waves)01 natural sciences7. Clean energyEffective nuclear chargePhysics - Atomic Physics010305 fluids & plasmasIonNuclear Theory (nucl-th)0103 physical sciencesPhysics::Atomic PhysicsAtomic physicsNuclear Experiment010306 general physicsPhysical Review A
researchProduct

Electron recombination with tungsten ions with open f-shells

2017

We calculate the electron recombination rates with target ions W$^{q+}$, $q = 18$ -- $25$, as functions of electron energy and electron temperature (i.e. the rates integrated over the Maxwellian velocity distribution). Comparison with available experimental data for W$^{18+}$, W$^{19+}$, and W$^{20+}$ is used as a test of our calculations. Our predictions for W$^{21+}$, W$^{22+}$, W$^{23+}$, W$^{24+}$, and W$^{25+}$ (where the experimental data are not available) may be used for plasma modelling in thermonuclear reactors. The results for the temperature dependent rates for each ion are fitted with the standard analytical expressions to make them easy to use. All of these ions have an open e…

PhysicsThermonuclear fusionAtomic Physics (physics.atom-ph)chemistry.chemical_elementFOS: Physical sciencesElectronPlasmaTungstenCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasIonPhysics - Atomic PhysicschemistryOrders of magnitude (time)0103 physical sciencesElectron temperatureAtomic physics010306 general physicsRecombination
researchProduct

Sensitivity of EDM experiments in paramagnetic atoms and molecules to hadronic CP violation

2020

Experiments searching for the electric dipole moment (EDM) of the electron $d_e$ utilise atomic/molecular states with one or more uncompensated electron spins, and these paramagnetic systems have recently achieved remarkable sensitivity to $d_e$. If the source of $CP$ violation resides entirely in the hadronic sector, the two-photon exchange processes between electrons and the nucleus induce $CP$-odd semileptonic interactions, parametrised by the Wilson coefficient $C_{SP}$, and provide the dominant source of EDMs in paramagnetic systems instead of $d_e$. We evaluate the $C_{SP}$ coefficients induced by the leading hadronic sources of $CP$ violation, namely nucleon EDMs and $CP$-odd pion-nu…

Particle physicsChiral perturbation theoryNuclear TheoryProtonAtomic Physics (physics.atom-ph)IsoscalarNuclear TheoryHadronFOS: Physical sciences01 natural sciencesPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPhysics::Atomic PhysicsSensitivity (control systems)Nuclear Experiment010306 general physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenology3. Good healthHigh Energy Physics - PhenomenologyElectric dipole momentNucleonPhysical Review D
researchProduct

Resonant enhancement of an oscillating electric field in an atom

2018

When an atom is placed into an oscillating electric field with frequency far from atomic resonances, the atomic electrons partly shield this field at the nucleus. It is conjectured that when the frequency of electric field reaches an atomic resonance, the electric field at the nucleus may be significantly enhanced. In this paper, we systematically study the mechanisms of this enhancement and show that it may reach five orders in magnitude in particular cases. As an application, we consider laser-assisted neutron capture in 139-Lanthanum nucleus and screening and resonance enhancement of nuclear electromagnetic transitions by electrons.

Nuclear TheoryField (physics)Atomic Physics (physics.atom-ph)Nuclear TheoryFOS: Physical sciencesElectron7. Clean energy01 natural sciencesPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)ShieldElectric field0103 physical sciencesAtommedicinePhysics::Atomic PhysicsNuclear Experiment010306 general physicsPhysics010308 nuclear & particles physicsResonanceHigh Energy Physics - PhenomenologyNeutron capturemedicine.anatomical_structureAtomic physicsNucleusPhysical Review A
researchProduct

Atomic structure calculations of superheavy noble element oganesson (Z=118)

2018

We calculate the spectrum and allowed E1 transitions of the superheavy element Og (Z=118). A combination of configuration interaction (CI) and perturbation theory (PT) is used (Dzuba \textit{et at.} Phys. Rev. A, \textbf{95}, 012503 (2017)). The spectrum of lighter analog Rn I is also calculated and compared to experiment with good agreement.

PhysicsAtomic Physics (physics.atom-ph)0103 physical sciencesSpectrum (functional analysis)FOS: Physical sciencesAtomic physicsConfiguration interactionElement (category theory)Perturbation theory010306 general physics010303 astronomy & astrophysics01 natural sciencesPhysics - Atomic PhysicsPhysical Review A
researchProduct

Nobelium energy levels and hyperfine structure constants

2018

Advances in laser spectroscopy of superheavy ($Z>100$) elements enabled determination of the nuclear moments of the heaviest nuclei, which requires high-precision atomic calculations of the relevant hyperfine structure (HFS) constants. Here, we calculated the HFS constants and energy levels for a number of nobelium (Z=102) states using the hybrid approach, combining linearized coupled-cluster and configuration interaction methods. We also carried out an extensive study of the No energies using 16-electron configuration interaction method to determine the position of the (5f^{13}7s^2 6d) and (5f^{13}7s^2 7p) levels with a hole in the 5f shell to evaluate their potential effect on the hype…

PhysicsAtomic Physics (physics.atom-ph)Potential effectchemistry.chemical_elementFOS: Physical sciencesConfiguration interactionHybrid approach01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmaschemistry0103 physical sciencesNobeliumAtomic physics010306 general physicsSpectroscopyHyperfine structureEnergy (signal processing)
researchProduct

Probing New Long-Range Interactions by Isotope Shift Spectroscopy

2018

We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca[superscript +] data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve the relative precision by 5 orders of magn…

PhysicsGeneral Physics010308 nuclear & particles physicsNuclear structureGeneral Physics and AstronomyElementary particlehep-phphysics.atm-clus7. Clean energy01 natural sciencesMathematical SciencesMassless particleEngineeringquant-ph0103 physical sciencesAtomPhysical Sciencesddc:550Effective field theoryNeutronddc:530Atomic physics010306 general physicsSpectroscopyBosonPhysical Review Letters
researchProduct

New constraints on axion-mediated P , T -violating interaction from electric dipole moments of diamagnetic atoms

2018

The exchange of an axionlike particle between atomic electrons and the nucleus may induce electric dipole moments (EDMs) of atoms and molecules. This interaction is described by a parity- and time-reversal-invariance-violating potential which depends on the product of a scalar ${g}^{s}$ and a pseudoscalar ${g}^{p}$ coupling constant. We consider the interaction with the specific combination of these constants, ${g}_{e}^{s}{g}_{N}^{p}$, which gives significant contributions to the EDMs of diamagnetic atoms. In this paper, we calculate these contributions to the EDMs of $^{199}\mathrm{Hg}$, $^{129}\mathrm{Xe}$, $^{211}\mathrm{Rn}$, and $^{225}\mathrm{Ra}$ for a wide range of axion masses. Com…

Coupling constantPhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAtoms in moleculesParity (physics)Electron01 natural sciencesPseudoscalarDipole0103 physical sciencesAtomPhysics::Atomic Physics010306 general physicsAxionPhysical Review D
researchProduct

Weak quadrupole moments

2017

Collective effects in deformed atomic nuclei present possible avenues of study on the non-spherical distribution of neutrons and the violation of the local Lorentz invariance. We introduce the weak quadrupole moment of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The weak quadrupole moment produces tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the …

Nuclear and High Energy PhysicsNuclear TheoryAtomic Physics (physics.atom-ph)Lorentz transformationNuclear TheoryFOS: Physical sciencesElectronLorentz covarianceWeak interaction01 natural sciencesPhysics - Atomic PhysicsNuclear Theory (nucl-th)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutronPhysics::Atomic Physics010306 general physicsPhysics010308 nuclear & particles physicsParity (physics)High Energy Physics - PhenomenologyQuadrupoleAtomic nucleussymbolsPhysics::Accelerator PhysicsAtomic physicsJournal of Physics G: Nuclear and Particle Physics
researchProduct

Interference-assisted detection of dark photon using atomic transitions

2019

Dark photon is a massive vector particle which couples to the physical photon through the kinetic mixing term. Such particles, if exist, are produced in photon beams and, in particular, in laser radiation. Due to the oscillations between the physical photon and the dark photon, the latter may be, in principle, detected in the light-shining-through-a-wall experiment. We propose a variant of this experiment where the detection of dark photons is based on the atomic transitions. The key feature of this scheme is that the detection probability is first order in the coupling constant due to the interference term in the photon and dark photon absorption amplitudes. We expect that such experiment …

Coupling constantPhysicsPhotonAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsFOS: Physical sciencesPhysics::OpticsAstrophysics::Cosmology and Extragalactic AstrophysicsRadiationLaserKinetic energyComputer Science::Digital Libraries7. Clean energy01 natural sciencesDark photonlaw.inventionPhysics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Amplitudelaw0103 physical sciencesAbsorption (logic)Atomic physics010306 general physics
researchProduct

Atomic physics studies at the gamma factory at CERN

2020

The Gamma Factory initiative proposes to develop novel research tools at CERN by producing, accelerating and storing highly relativistic, partially stripped ion beams in the SPS and LHC storage rings. By exciting the electronic degrees of freedom of the stored ions with lasers, high-energy narrow-band photon beams will be produced by properly collimating the secondary radiation that is peaked in the direction of ions' propagation. Their intensities, up to $10^{17}$ photons per second, will be several orders of magnitude higher than those of the presently operating light sources in the particularly interesting $\gamma$--ray energy domain reaching up to 400 MeV. This article reviews opportuni…

Photonradiation: secondaryAtomic Physics (physics.atom-ph)atomic spectroscopyGeneral Physics and Astronomy02 engineering and technology01 natural sciences7. Clean energyPhysics - Atomic PhysicsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)propagation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]particle sourcePhysicsLarge Hadron Collidercollimatorhep-phsecondary beam021001 nanoscience & nanotechnologyion: excited stateLHC storage ringsHigh Energy Physics - PhenomenologyCERN LHC CollSPS storage rings0210 nano-technologyParticle Physics - ExperimentAccelerator Physics (physics.acc-ph)CERN LabOrders of magnitude (temperature)[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]gamma–ray productionOther Fields of PhysicsFOS: Physical sciencesAtomic spectroscopyion: beamgamma ray: burstpartially stripped ionsphysics.atom-phIonNuclear physics0103 physical sciencesddc:530010306 general physicsSpectroscopyphoton: beamphysics.acc-phParticle Physics - PhenomenologyAccelerator physicsparticle source: proposedhep-exCERN SPSAccelerators and Storage Rings[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]laser* Automatic Keywords *ion: storage ringatomic physics[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physics::Accelerator PhysicsPhysics - Accelerator PhysicsStorage ring
researchProduct

Effects of $CP$-violating internucleon interactions in paramagnetic molecules

2020

We demonstrate that electron electric dipole moment experiments with molecules in paramagnetic state are sensitive to $P,T$-violating nuclear forces and other $CP$-violating parameters in the hadronic sector. These experiments, in particular, measure the coupling constant $C_{SP}$ of the $CP$-odd contact semileptonic interaction. We establish relations between $C_{SP}$ and different $CP$-violating hadronic parameters including strength constants of the $CP$-odd nuclear potentials, $CP$-odd pion-nucleon interactions, quark-chromo EDM and QCD vacuum angle. These relations allow us to find limits on various $CP$-odd hadronic parameters.

Nuclear TheoryAtomic Physics (physics.atom-ph)HadronQCD vacuumNuclear TheoryFOS: Physical sciences01 natural sciencesMeasure (mathematics)Physics - Atomic PhysicsNuclear physicsNuclear Theory (nucl-th)ParamagnetismHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNuclear force010306 general physicsNuclear ExperimentPhysicsCoupling constant010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyState (functional analysis)Electron electric dipole moment3. Good healthHigh Energy Physics - PhenomenologyHigh Energy Physics::Experiment
researchProduct

Sensitivity of the isotope shift to the distribution of nuclear charge density

2019

It is usually assumed that the field isotope shift (FIS) is completely determined by the change of the averaged squared values of the nuclear charge radius $\ensuremath{\langle}{r}^{2}\ensuremath{\rangle}$. Relativistic corrections modify the expression for FIS, which is actually described by the change of $\ensuremath{\langle}{r}^{2\ensuremath{\gamma}}\ensuremath{\rangle}$, where $\ensuremath{\gamma}=\sqrt{1\ensuremath{-}{Z}^{2}{\ensuremath{\alpha}}^{2}}$. In the present paper we consider corrections to FIS which are due to the nuclear deformation and due to the predicted reduced charge density in the middle of the superheavy nuclei produced by a very strong proton repulsion (hole in the n…

PhysicsProtonCenter (category theory)Charge densityField (mathematics)Radius01 natural sciencesEffective nuclear charge010305 fluids & plasmasDistribution (mathematics)0103 physical sciencesSensitivity (control systems)Atomic physics010306 general physicsPhysical Review A
researchProduct

Calculation of atomic properties of superheavy elements Z=110–112 and their ions

2020

We calculate the spectra, electric dipole transition rates, and isotope shifts of the superheavy elements Ds ($Z=110$), Rg ($Z=111$), and Cn ($Z=112$) and their ions. These calculations were performed using a recently developed, efficient version of the ab intio configuration-interaction combined with perturbation theory to treat distant effects. The successive ionization potentials of the three elements are also calculated and compared to lighter analogous elements.

PhysicsIsotopeSuperheavy Elements7. Clean energy01 natural sciencesSpectral line010305 fluids & plasmasIonAtomic propertiesIonization0103 physical sciencesAtomic physicsElectric dipole transitionPerturbation theory010306 general physicsPhysical Review A
researchProduct

Pseudovector and pseudoscalar spin-dependent interactions in atoms

2019

Hitherto unknown elementary particles can be searched for with atomic spectroscopy. We conduct such a search using a potential that results from the longitudinal polarization of a pseudovector particle. We show that such a potential, inversely proportional to the boson's mass squared, $V \propto 1/M^2$, can stay finite at $M \to 0$ if the theory is renormalizable. We also look for a pseudoscalar boson, which induces a contact spin-dependent potential that does not contribute to new forces searched for in experiments with macroscopic objects, but may be seen in atomic spectroscopy. We extract limits on the interaction constants of these potentials from the experimental spectra of antiprotoni…

High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Atomic Physics (physics.atom-ph)FOS: Physical sciencesddc:530Physics::Atomic PhysicsPhysics - Atomic Physics
researchProduct

Improved Limits on Axionlike-Particle-Mediated P , T -Violating Interactions between Electrons and Nucleons from Electric Dipole Moments of Atoms and…

2018

In the presence of P, T-violating interactions, the exchange of axionlike particles between electrons and nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-Dirac method including electron core polarization corrections. We present analytical estimates to explain the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the experimental bounds on the EDMs of atoms and molecules, including ^{133}Cs, ^{205}Tl, ^{129}Xe, ^{199}Hg, ^{171}Yb^{19}F, ^{180}Hf^{19}F^{+}, and ^{232}Th^{16}O, we constrain the P, T-violating s…

Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAtoms in moleculesHartree–Fock methodGeneral Physics and AstronomyElectron01 natural sciencesDipole0103 physical sciencesCP violationPhysics::Atomic PhysicsAtomic physics010306 general physicsRandom phase approximationNucleonAxionPhysical Review Letters
researchProduct

Searching for Axion Dark Matter in Atoms: ~Oscillating Electric Dipole Moments and Spin-Precession Effects

2015

Roberts, Benjamin M. "Searching for Axion Dark Matter in Atoms: ~Oscillating Electric Dipole Moments and Spin-Precession Effects" in Proceedings, 11th Patras Workshop on Axions, WIMPs and WISPs (Axion-WIMP 2015) / Irastorza, Igor G., Redondo, Javier, Carmona, José Manuel, Cebrian, Susana, Dafni, Theopisti, Iguaz, Francisco J., Luzon, Gloria (eds.), Verlag Deutsches Elektronen-Synchrotron : 2015 ; AXION-WIMP 2015 : 11th Patras Workshop on Axions, WIMPs and WISPs, 2015-06-22 - 2015-06-26, Zaragoza 11th Patras Workshop on Axions, WIMPs and WISPs, AXION-WIMP 2015, Zaragoza, Spain, 22 Jun 2015 - 26 Jun 2015 ; DESY-PROC 120-123(2015). doi:10.3204/DESY-PROC-2015-02/roberts_benjamin_axions

Nuclear Theory (nucl-th)High Energy Physics::TheoryHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Nuclear TheoryAtomic Physics (physics.atom-ph)Physics::Instrumentation and DetectorsNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesNuclear ExperimentPhysics - Atomic Physics
researchProduct

Experimental constraint on axion-like particle coupling over seven orders of magnitude in mass

2020

We use our recent electric dipole moment (EDM) measurement data to constrain the possibility that the HfF$^+$ EDM oscillates in time due to interactions with candidate dark matter axion-like particles (ALPs). We employ a Bayesian analysis method which accounts for both the look-elsewhere effect and the uncertainties associated with stochastic density fluctuations in the ALP field. We find no evidence of an oscillating EDM over a range spanning from 27 nHz to 400 mHz, and we use this result to constrain the ALP-gluon coupling over the mass range $10^{-22}-10^{-15}$ eV. This is the first laboratory constraint on the ALP-gluon coupling in the $10^{-17}-10^{-15}$ eV range, and the first laborat…

High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics::Atomic PhysicsPhysics::GeophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysics - Atomic Physics
researchProduct

New Strong Bounds on sub-GeV Dark Matter from Boosted and Migdal Effects

2020

Due to the low nuclear recoils, sub-GeV dark matter (DM) is usually beyond the sensitivity of the conventional DM direct detection experiments. The boosted and Migdal scattering mechanisms have been proposed as two new complementary avenues to search for light DM. In this work, we consider the momentum-transfer effect in the DM-nucleus scattering to derive the new bounds on sub-GeV DM for these two scenarios. We show that such an effect is sizable so that the existing bounds on the DM-nucleus scattering cross section can be improved significantly.

High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesNuclear ExperimentComputer Science::DatabasesAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Searching for Scalar Dark Matter in Atoms and Astrophysical Phenomena: Variation of Fundamental Constants

2015

Stadnik, Yevgeny V. "Searching for Scalar Dark Matter in Atoms and Astrophysical Phenomena: Variation of Fundamental Constants" in Proceedings, 11th Patras Workshop on Axions, WIMPs and WISPs (Axion-WIMP 2015) / Irastorza, Igor G., Redondo, Javier, Carmona, José Manuel, Cebrian, Susana, Dafni, Theopisti, Iguaz, Francisco J., Luzon, Gloria (eds.), Verlag Deutsches Elektronen-Synchrotron : 2015 ; AXION-WIMP 2015 : 11th Patras Workshop on Axions, WIMPs and WISPs, 2015-06-22 - 2015-06-26, Zaragoza 11th Patras Workshop on Axions, WIMPs and WISPs, AXION-WIMP 2015, Zaragoza, Spain, 22 Jun 2015 - 26 Jun 2015 ; DESY-PROC 169-172(2015). doi:10.3204/DESY-PROC-2015-02/roberts_benjamin

Nuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Nuclear TheoryAtomic Physics (physics.atom-ph)FOS: Physical sciencesAstrophysics - Cosmology and Nongalactic AstrophysicsPhysics - Atomic Physics
researchProduct

Theoretical study of $^{173}$YbOH to search for the nuclear magnetic quadrupole moment

2019

CP-violating interaction of the nuclear magnetic quadrupole moment (MQM) with electrons in the ytterbium mono-hydroxide molecule, $^{173}$YbOH, is considered. Both the magnetic quadrupole moment (MQM) of the $^{173}$Yb nucleus and the molecular interaction constant WM are estimated. Electron correlation effects are taken into account within the relativistic Fock-space coupled cluster method. Results are interpreted in terms of the strength constants of CP-violating nuclear forces, neutron EDM, QCD vacuum angle $\theta$, quark EDM and chromo-EDM.

Nuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Nuclear TheoryAtomic Physics (physics.atom-ph)High Energy Physics::PhenomenologyNuclear TheoryFOS: Physical sciencesPhysics::Atomic PhysicsNuclear ExperimentPhysics - Atomic Physics
researchProduct

Oscillating nuclear electric dipole moments inside atoms

2019

Interaction with the axion dark matter (DM) field generates an oscillating nuclear electric dipole moment (EDM) with a frequency corresponding to the axion's Compton frequency. Within an atom, an oscillating EDM can drive electric dipole transitions in the electronic shell. In the absence of radiation, and if the axion frequency matches a dipole transition, it can promote the electron into the excited state. The excitation events can be detected, for example, via subsequent uorescence or photoionization. Here we calculate the rates of such transitions. For a single light atom and an axion Compton frequency resonant with a transition energy corresponding to 1 eV, the rate is on the order of …

Nuclear Theory (nucl-th)Nuclear TheoryAtomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics::Atomic PhysicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics - Atomic Physics
researchProduct