0000000000640023

AUTHOR

Christian Bonatti

showing 39 related works from this author

Attracteurs de Lorenz de variété instable de dimension arbitraire

1997

Abstract We construct the first examples of flows with robust multidimensional Lorenz-like attractors: the singularity contained in the attractor may have any number of expanding eigenvalues, and the attractor remains transitive in a whole neighbourhood of the initial flow. These attractors support a Sinai-Ruelle-Bowen SRB-measure and, contrary to the usual (low-dimensional) Lorenz models, they have infinite modulus of structural stability.

Nonlinear Sciences::Chaotic DynamicsTransitive relationMathematics::Dynamical SystemsSingularityFlow (mathematics)Structural stabilityMathematical analysisAttractorNeighbourhood (graph theory)General MedicineLorenz systemEigenvalues and eigenvectorsMathematicsComptes Rendus de l'Académie des Sciences - Series I - Mathematics
researchProduct

Transitive Anosov flows and Axiom-A diffeomorphisms

2009

AbstractLet M be a smooth compact Riemannian manifold without boundary, and ϕ:M×ℝ→M a transitive Anosov flow. We prove that if the time-one map of ϕ is C1-approximated by Axiom-A diffeomorphisms with more than one attractor, then ϕ is topologically equivalent to the suspension of an Anosov diffeomorphism.

Pure mathematicsFlow (mathematics)Applied MathematicsGeneral MathematicsMathematical analysisAttractorBoundary (topology)Anosov diffeomorphismRiemannian manifoldTopological conjugacySuspension (topology)Axiom AMathematicsErgodic Theory and Dynamical Systems
researchProduct

Small $C^1$ actions of semidirect products on compact manifolds

2020

Let $T$ be a compact fibered $3$--manifold, presented as a mapping torus of a compact, orientable surface $S$ with monodromy $\psi$, and let $M$ be a compact Riemannian manifold. Our main result is that if the induced action $\psi^*$ on $H^1(S,\mathbb{R})$ has no eigenvalues on the unit circle, then there exists a neighborhood $\mathcal U$ of the trivial action in the space of $C^1$ actions of $\pi_1(T)$ on $M$ such that any action in $\mathcal{U}$ is abelian. We will prove that the same result holds in the generality of an infinite cyclic extension of an arbitrary finitely generated group $H$, provided that the conjugation action of the cyclic group on $H^1(H,\mathbb{R})\neq 0$ has no eige…

Pure mathematics37D30[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Cyclic groupDynamical Systems (math.DS)Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]57M60$C^1$–close to the identityMathematics - Geometric TopologyPrimary 37C85. Secondary 20E22 57K32[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesMapping torusFOS: Mathematics57R3520E220101 mathematicsAbelian groupMathematics - Dynamical SystemsMathematics37C85010102 general mathematicsGeometric Topology (math.GT)groups acting on manifoldsRiemannian manifoldSurface (topology)57M50fibered $3$–manifoldhyperbolic dynamicsUnit circleMonodromy010307 mathematical physicsGeometry and TopologyFinitely generated groupMathematics - Group Theory
researchProduct

Roots in the mapping class groups

2006

The purpose of this paper is the study of the roots in the mapping class groups. Let $\Sigma$ be a compact oriented surface, possibly with boundary, let $\PP$ be a finite set of punctures in the interior of $\Sigma$, and let $\MM (\Sigma, \PP)$ denote the mapping class group of $(\Sigma, \PP)$. We prove that, if $\Sigma$ is of genus 0, then each $f \in \MM (\Sigma)$ has at most one $m$-root for all $m \ge 1$. We prove that, if $\Sigma$ is of genus 1 and has non-empty boundary, then each $f \in \MM (\Sigma)$ has at most one $m$-root up to conjugation for all $m \ge 1$. We prove that, however, if $\Sigma$ is of genus $\ge 2$, then there exist $f,g \in \MM (\Sigma, \PP)$ such that $f^2=g^2$, $…

Class (set theory)Pure subgroupGeneral MathematicsBoundary (topology)SigmaGeometric Topology (math.GT)Group Theory (math.GR)Surface (topology)Mapping class groupCombinatoricsMathematics - Geometric Topology57M99Genus (mathematics)FOS: MathematicsMathematics - Group TheoryFinite setMathematicsProceedings of the London Mathematical Society
researchProduct

Existence of common zeros for commuting vector fields on 3‐manifolds II. Solving global difficulties

2020

We address the following conjecture about the existence of common zeros for commuting vector fields in dimension three: if $X,Y$ are two $C^1$ commuting vector fields on a $3$-manifold $M$, and $U$ is a relatively compact open such that $X$ does not vanish on the boundary of $U$ and has a non vanishing Poincar\'e-Hopf index in $U$, then $X$ and $Y$ have a common zero inside $U$. We prove this conjecture when $X$ and $Y$ are of class $C^3$ and every periodic orbit of $Y$ along which $X$ and $Y$ are collinear is partially hyperbolic. We also prove the conjecture, still in the $C^3$ setting, assuming that the flow $Y$ leaves invariant a transverse plane field. These results shed new light on t…

Pure mathematicsConjectureGeneral Mathematics37C85010102 general mathematicsZero (complex analysis)Boundary (topology)Field (mathematics)Dynamical Systems (math.DS)01 natural sciences37C25Flow (mathematics)Relatively compact subspace0103 physical sciences58C30 (primary)FOS: MathematicsVector field010307 mathematical physics0101 mathematicsInvariant (mathematics)Mathematics - Dynamical Systems[MATH]Mathematics [math]57S05Mathematics
researchProduct

Periodic measures and partially hyperbolic homoclinic classes

2019

In this paper, we give a precise meaning to the following fact, and we prove it: $C^1$-open and densely, all the non-hyperbolic ergodic measures generated by a robust cycle are approximated by periodic measures. We apply our technique to the global setting of partially hyperbolic diffeomorphisms with one dimensional center. When both strong stable and unstable foliations are minimal, we get that the closure of the set of ergodic measures is the union of two convex sets corresponding to the two possible $s$-indices; these two convex sets intersect along the closure of the set of non-hyperbolic ergodic measures. That is the case for robustly transitive perturbation of the time one map of a tr…

Pure mathematicsMathematics::Dynamical SystemsGeneral MathematicsClosure (topology)Dynamical Systems (math.DS)01 natural sciencespartial hyperbolicityquasi-hyperbolic stringBlenderFOS: Mathematicsnon-hyperbolic measureErgodic theoryHomoclinic orbitMathematics - Dynamical Systems0101 mathematics[MATH]Mathematics [math]ergodic measureperiodic measureMathematicsfoliationsTransitive relationApplied MathematicsMSC (2010): Primary 37D30 37C40 37C50 37A25 37D25010102 general mathematicsRegular polygonTorusstabilityFlow (mathematics)systemsDiffeomorphismrobust cycleLyapunov exponent
researchProduct

Tame dynamics and robust transitivity chain-recurrence classes versus homoclinic classes

2014

Transitive relationPure mathematicsChain (algebraic topology)Applied MathematicsGeneral MathematicsDynamics (mechanics)Homoclinic orbitAlgorithmMathematicsTransactions of the American Mathematical Society
researchProduct

Anomalous Anosov flows revisited

2017

This paper is devoted to higher dimensional Anosov flows and consists of two parts. In the first part, we investigate fiberwise Anosov flows on affine torus bundles which fiber over 3-dimensional Anosov flows. We provide a dichotomy result for such flows --- they are either suspensions of Anosov diffeomorphisms or the stable and unstable distributions have equal dimensions. In the second part, we give a new surgery type construction of Anosov flows, which yields non-transitive Anosov flows in all odd dimensions.

Pure mathematicsdiffeomorphismsMathematics::Dynamical Systems37D30Fiber (mathematics)General Mathematics010102 general mathematics37D30 (primary)TorusGeometric Topology (math.GT)Dynamical Systems (math.DS)Type (model theory)01 natural sciencesMathematics::Geometric TopologyPhysics::Fluid DynamicsMathematics - Geometric Topology0103 physical sciencesFOS: Mathematics010307 mathematical physicsAffine transformation0101 mathematics[MATH]Mathematics [math]Mathematics - Dynamical SystemsMathematics::Symplectic GeometryMathematics
researchProduct

Building Anosov flows on $3$–manifolds

2014

We prove a result allowing to build (transitive or non-transitive) Anosov flows on 3-manifolds by gluing together filtrating neighborhoods of hyperbolic sets. We give several applications; for example: 1. we build a 3-manifold supporting both of a transitive Anosov vector field and a non-transitive Anosov vector field; 2. for any n, we build a 3-manifold M supporting at least n pairwise different Anosov vector fields; 3. we build transitive attractors with prescribed entrance foliation; in particular, we construct some incoherent transitive attractors; 4. we build a transitive Anosov vector field admitting infinitely many pairwise non-isotopic trans- verse tori.

[ MATH ] Mathematics [math]Pure mathematicsAnosov flowMathematics::Dynamical Systems3–manifolds[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)$3$–manifolds01 natural sciencesFoliationsSet (abstract data type)MSC: Primary: 37D20 Secondary: 57M9957M99Diffeomorphisms0103 physical sciencesAttractorFOS: Mathematics0101 mathematics[MATH]Mathematics [math]Mathematics - Dynamical SystemsManifoldsMathematics::Symplectic Geometry3-manifold37D20 57MMathematicsTransitive relation37D20010308 nuclear & particles physics010102 general mathematicsTorusMathematics::Geometric TopologyFlow (mathematics)Anosov flowsFoliation (geology)Vector fieldhyperbolic plugsGeometry and Topologyhyperbolic basic set3-manifold
researchProduct

Abnormal escape rates from nonuniformly hyperbolic sets

1999

Consider a $C^{1+\epsilon}$ diffeomorphism $f$ having a uniformly hyperbolic compact invariant set $\Omega$, maximal invariant in some small neighbourhood of itself. The asymptotic exponential rate of escape from any small enough neighbourhood of $\Omega$ is given by the topological pressure of $-\log |J^u f|$ on $\Omega$ (Bowen–Ruelle in 1975). It has been conjectured (Eckmann–Ruelle in 1985) that this property, formulated in terms of escape from the support $\Omega$ of a (generalized Sinai–Ruelle–Bowen (SRB)) measure, using its entropy and positive Lyapunov exponents, holds more generally. We present a simple $C^\infty$ two-dimensional counterexample, constructed by a surgery using a Bowe…

Nonlinear Sciences::Chaotic DynamicsPure mathematicsMathematics::Dynamical SystemsApplied MathematicsGeneral MathematicsAttractorSaddleMathematicsCounterexampleErgodic Theory and Dynamical Systems
researchProduct

Feuilletages deCP(n) : de l’holonomie hyperbolique pour les minimaux exceptionnels

1992

Let ℱ be a holomorphic foliation ofCP(n). If ℱ has a leaf L, the closure L of which is disjoint from the singular set of the foliation, we prove that there exists a loop in a leaf contained in L with contracting hyperbolic holonomy.

Mathematics::Dynamical SystemsQuantitative Biology::Tissues and OrgansGeneral MathematicsMathematical analysisHolomorphic functionHolonomyClosure (topology)Disjoint setsFoliationCombinatoricsLoop (topology)Mathematics::Differential GeometryMathematics::Symplectic GeometryMathematicsPublications mathématiques de l'IHÉS
researchProduct

Robust existence of nonhyperbolic ergodic measures with positive entropy and full support

2021

We prove that for some manifolds $M$ the set of robustly transitive partially hyperbolic diffeomorphisms of $M$ with one-dimensional nonhyperbolic centre direction contains a $C^1$-open and dense subset of diffeomorphisms with nonhyperbolic measures which are ergodic, fully supported and have positive entropy. To do so, we formulate abstract conditions sufficient for the construction of an ergodic, fully supported measure $\mu$ which has positive entropy and is such that for a continuous function $\phi\colon X\to\mathbb{R}$ the integral $\int\phi\,d\mu$ vanishes. The criterion is an extended version of the control at any scale with a long and sparse tail technique coming from the previous w…

Transitive relationPure mathematicsHyperbolicityMathematics::Dynamical SystemsDense setContinuous function (set theory)[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Scale (descriptive set theory)Dynamical Systems (math.DS)Measure (mathematics)Theoretical Computer SciencePositive entropyMathematics (miscellaneous)FOS: MathematicsErgodic theory37D25 37D35 37D30 28D99Mathematics - Dynamical SystemsMathematicsCriterion
researchProduct

Stabilization of heterodimensional cycles

2011

We consider diffeomorphisms $f$ with heteroclinic cycles associated to saddles $P$ and $Q$ of different indices. We say that a cycle of this type can be stabilized if there are diffeomorphisms close to $f$ with a robust cycle associated to hyperbolic sets containing the continuations of $P$ and $Q$. We focus on the case where the indices of these two saddles differ by one. We prove that, excluding one particular case (so-called twisted cycles that additionally satisfy some geometrical restrictions), all such cycles can be stabilized.

Pure mathematicsMathematics::Dynamical Systems37C29 37D20 37D30Applied MathematicsFOS: MathematicsGeneral Physics and AstronomyStatistical and Nonlinear PhysicsDynamical Systems (math.DS)Mathematics - Dynamical SystemsType (model theory)Focus (optics)Mathematical PhysicsMathematicsNonlinearity
researchProduct

Perturbation of the Lyapunov spectra of periodic orbits

2012

We describe all Lyapunov spectra that can be obtained by perturbing the derivatives along periodic orbits of a diffeomorphism. The description is expressed in terms of the finest dominated splitting and Lyapunov exponents that appear in the limit of a sequence of periodic orbits, and involves the majorization partial order. Among the applications, we give a simple criterion for the occurrence of universal dynamics.

Lyapunov functionGeneral MathematicsMathematical analysisPerturbation (astronomy)Dynamical Systems (math.DS)Lyapunov exponentSpectral linesymbols.namesakeFOS: MathematicssymbolsLimit of a sequencePeriodic orbitsDiffeomorphismMathematics - Dynamical SystemsMajorizationMathematicsProceedings of the London Mathematical Society
researchProduct

On the existence of attractors

2009

On every compact 3-manifold, we build a non-empty open set $\cU$ of $\Diff^1(M)$ such that, for every $r\geq 1$, every $C^r$-generic diffeomorphism $f\in\cU\cap \Diff^r(M)$ has no topological attractors. On higher dimensional manifolds, one may require that $f$ has neither topological attractors nor topological repellers. Our examples have finitely many quasi attractors. For flows, we may require that these quasi attractors contain singular points. Finally we discuss alternative definitions of attractors which may be better adapted to generic dynamics.

Pure mathematicsMathematics::Dynamical SystemsApplied MathematicsGeneral MathematicsMathematical analysisOpen setDynamical Systems (math.DS)Nonlinear Sciences::Chaotic Dynamics37C05 37C20 37C25 37C29 37D30AttractorFOS: MathematicsDiffeomorphismMathematics - Dynamical SystemsMathematics::Symplectic GeometryMathematics
researchProduct

Hasse diagrams and orbit class spaces

2011

Abstract Let X be a topological space and G be a group of homeomorphisms of X. Let G ˜ be an equivalence relation on X defined by x G ˜ y if the closure of the G-orbit of x is equal to the closure of the G-orbit of y. The quotient space X / G ˜ is called the orbit class space and is endowed with the natural order inherited from the inclusion order of the closure of the classes, so that, if such a space is finite, one can associate with it a Hasse diagram. We show that the converse is also true: any finite Hasse diagram can be realized as the Hasse diagram of an orbit class space built from a dynamical system ( X , G ) where X is a compact space and G is a finitely generated group of homeomo…

Pure mathematicsMathematical analysisOrbit classClosure (topology)Hasse diagramTopological spaceGroup of homeomorphismsQuotient space (linear algebra)Hasse principleRealizationHomogeneous spaceCovering relationFinitely generated groupGeometry and TopologyHasse diagramMathematicsTopology and its Applications
researchProduct

Recurrence and genericity

2003

We prove a C^1-connecting lemma for pseudo-orbits of diffeomorphisms on compact manifolds. We explore some consequences for C^1-generic diffeomorphisms. For instance, C^1-generic conservative diffeomorphisms are transitive. Nous montrons un lemme de connexion C^1 pour les pseudo-orbites des diffeomorphismes des varietes compactes. Nous explorons alors les consequences pour les diffeomorphismes C^1-generiques. Par exemple, les diffeomorphismes conservatifs C^1-generiques sont transitifs.

Pure mathematicsMathematics::Dynamical SystemsRiemann manifold[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciences37C05 37C20FOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsDynamical system (definition)Mathematics::Symplectic GeometryMathematicsLemma (mathematics)Transitive relationRecurrence relationgeneric properties010102 general mathematicsMathematical analysissmooth dynamical systemsGeneral Medicine16. Peace & justicechain recurrence010101 applied mathematicsconnecting lemmaDiffeomorphism
researchProduct

Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples

2016

We build an example of a non-transitive, dynamically coherent partially hyperbolic diffeomorphism $f$ on a closed $3$-manifold with exponential growth in its fundamental group such that $f^n$ is not isotopic to the identity for all $n\neq 0$. This example contradicts a conjecture in \cite{HHU}. The main idea is to consider a well-understood time-$t$ map of a non-transitive Anosov flow and then carefully compose with a Dehn twist.

Pure mathematicsFundamental groupMathematics::Dynamical SystemsGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]MSc: 37D30[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciencesIdentity (music)Exponential growth0103 physical sciencesFOS: MathematicsMathematics - Dynamical Systems0101 mathematicsMathematicsConjecture010102 general mathematicsClassificationMathematics::Geometric TopologyDehn twistFlow (mathematics)Partially hyperbolic diffeomorphisms010307 mathematical physicsDiffeomorphism
researchProduct

Generic Properties of Dynamical Systems

2006

The state of a concrete system (from physics, chemistry, ecology, or other sciences) is described using (finitely many, say n) observable quantities (e.g., positions and velocities for mechanical systems, population densities for echological systems, etc.). Hence, the state of a system may be represented as a point $x$ in a geometrical space $\mathbb R^n$. In many cases, the quantities describing the state are related, so that the phase space (space of all possible states) is a submanifold $M\subset \mathbb R^n$. The time evolution of the system is represented by a curve $x_t$, $t \in\mathbb R$ drawn on the phase space $M$, or by a sequence $x_n \in M$, $n \in\mathbb Z$, if we consider disc…

Pure mathematicsSequenceDynamical systems theoryGeneric property010102 general mathematicsObservableState (functional analysis)Space (mathematics)Submanifold01 natural sciencesPhase space0103 physical sciences010307 mathematical physics0101 mathematics
researchProduct

Surface homeomorphisms with zero dimensional singular set

1998

We prove that if f is an orientation-preserving homeomorphism of a closed orientable surface M whose singular set is totally disconnected, then f is topologically conjugate to a conformal transformation.

Surface (mathematics)Pure mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Conformal mapDynamical Systems (math.DS)01 natural sciencesKérékjártós theorySet (abstract data type)Totally disconnected spaceRegular homeomorphisms0103 physical sciencesFOS: Mathematics54H20; 57S10; 58FxxRiemann sphereMathematics - Dynamical Systems0101 mathematicsMathematics - General TopologyMathematics010102 general mathematicsGeneral Topology (math.GN)Zero (complex analysis)Applications conformesHomeomorphismHoméomorphismes des surfacesApplications conformes.Transformation (function)Limit set010307 mathematical physicsGeometry and Topology54H20 (Primary) 57S10 (Secondary) 58Fxx (Secondary)Topological conjugacy
researchProduct

SURVEY Towards a global view of dynamical systems, for the C1-topology

2011

AbstractThis paper suggests a program for getting a global view of the dynamics of diffeomorphisms, from the point of view of the C1-topology. More precisely, given any compact manifold M, one splits Diff1(M) into disjoint C1-open regions whose union is C1-dense, and conjectures state that each of these open sets and their complements is characterized by the presence of: •either a robust local phenomenon;•or a global structure forbidding this local phenomenon. Other conjectures state that some of these regions are empty. This set of conjectures draws a global view of the dynamics, putting in evidence the coherence of the numerous recent results on C1-generic dynamics.

Pure mathematicsDynamical systems theoryApplied MathematicsGeneral MathematicsPhenomenonOpen setPoint (geometry)Coherence (statistics)State (functional analysis)Disjoint setsManifoldMathematicsErgodic Theory and Dynamical Systems
researchProduct

Partially hyperbolic diffeomorphisms with a uniformly compact center foliation: the quotient dynamics

2016

We show that a partially hyperbolic$C^{1}$-diffeomorphism$f:M\rightarrow M$with a uniformly compact$f$-invariant center foliation${\mathcal{F}}^{c}$is dynamically coherent. Further, the induced homeomorphism$F:M/{\mathcal{F}}^{c}\rightarrow M/{\mathcal{F}}^{c}$on the quotient space of the center foliation has the shadowing property, i.e. for every${\it\epsilon}>0$there exists${\it\delta}>0$such that every${\it\delta}$-pseudo-orbit of center leaves is${\it\epsilon}$-shadowed by an orbit of center leaves. Although the shadowing orbit is not necessarily unique, we prove the density of periodic center leaves inside the chain recurrent set of the quotient dynamics. Other interesting proper…

010101 applied mathematicsPure mathematicsMSC: 37D30 37C15Applied MathematicsGeneral Mathematics010102 general mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]0101 mathematics01 natural sciencesQuotientMathematics
researchProduct

Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension

1994

AbstractWe construct an example of transitive Anosov flow on a compact 3-manifold, which admits a transversal torus and is not the suspension of an Anosov diffeomorphism.

Pure mathematicsMathematics::Dynamical SystemsFlow (mathematics)Applied MathematicsGeneral MathematicsTransversal (combinatorics)TorusAnosov diffeomorphismMathematics::Symplectic GeometryMathematics::Geometric TopologySuspension (topology)MathematicsErgodic Theory and Dynamical Systems
researchProduct

Perturbations of the derivative along periodic orbits

2006

International audience; We show that a periodic orbit of large period of a diffeomorphism or flow, either admits a dominated splitting of a prescribed strength, or can be turned into a sink or a source by a C1-small perturbation along the orbit. As a consequence we show that the linear Poincaré flow of a C1-vector field admits a dominated splitting over any robustly transitive set.

Applied MathematicsGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]010102 general mathematicsMathematical analysis[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Transitive set16. Peace & justice01 natural sciences37D30 (34C25 34D10 37C05 37C10 37C27)010101 applied mathematicsPeriodic orbitsVector fieldDiffeomorphism0101 mathematicsMathematics
researchProduct

A criterion for zero averages and full support of ergodic measures

2018

International audience; Consider a homeomorphism $f$ defined on a compact metric space $X$ and a continuous map $\phi\colon X \to \mathbb{R}$. We provide an abstract criterion, called control at any scale with a long sparse tail for a point $x\in X$ and the map $\phi$, which guarantees that any weak* limit measure $\mu$ of the Birkhoff average of Dirac measures $\frac1n\sum_0^{n-1}\delta(f^i(x))$ s such that $\mu$-almost every point $y$ has a dense orbit in $X$ and the Birkhoff average of $\phi$ along the orbit of $y$ is zero.As an illustration of the strength of this criterion, we prove that the diffeomorphisms with nonhyperbolic ergodic measures form a $C^1$-open and dense subset of the s…

Pure mathematics37D25 37D30 37D35 28D99Mathematics::Dynamical SystemsDense setGeneral MathematicsNonhyperbolic measure[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]MSC: 37D25 37D35 37D30 28D99[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Partial hyperbolicity01 natural sciencesMeasure (mathematics)FOS: MathematicsErgodic theoryHomoclinic orbit0101 mathematicsMathematics - Dynamical SystemsMathematicsTransitivity010102 general mathematicsZero (complex analysis)Ergodic measure010101 applied mathematicsCompact spaceHomeomorphism (graph theory)Birkhoff averageOrbit (control theory)Lyapunov exponent
researchProduct

Non-wandering sets with non-empty interiors

2003

We study diffeomorphisms of a closed connected manifold whose non-wandering set has a non-empty interior and conjecture that C1-generic diffeomorphisms whose non-wandering set has a non-empty interior are transitive. We prove this conjecture in three cases: hyperbolic diffeomorphisms, partially hyperbolic diffeomorphisms with two hyperbolic bundles, and tame diffeomorphisms (in the first case, the conjecture is folklore; in the second one, it follows by adapting the proof in Brin (1975 Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature Funct. Anal. Appl. 9 9–19)).We study this conjecture without global assumptions and pro…

Transitive relationPure mathematicsClass (set theory)Mathematics::Dynamical SystemsConjectureDynamical systems theoryApplied MathematicsMathematical analysisGeneral Physics and AstronomyHyperbolic manifoldStatistical and Nonlinear PhysicsManifoldSet (abstract data type)Homoclinic orbitMathematics::Symplectic GeometryMathematical PhysicsMathematicsNonlinearity
researchProduct

3-manifolds which are orbit spaces of diffeomorphisms

2008

Abstract In a very general setting, we show that a 3-manifold obtained as the orbit space of the basin of a topological attractor is either S 2 × S 1 or irreducible. We then study in more detail the topology of a class of 3-manifolds which are also orbit spaces and arise as invariants of gradient-like diffeomorphisms (in dimension 3). Up to a finite number of exceptions, which we explicitly describe, all these manifolds are Haken and, by changing the diffeomorphism by a finite power, all the Seifert components of the Jaco–Shalen–Johannson decomposition of these manifolds are made into product circle bundles.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Seifert fibrationsClass (set theory)Pure mathematicsGradient-like diffeomorphism[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Dimension (graph theory)[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Space (mathematics)01 natural sciences[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesAttractorJaco–Shalen–Johannson decomposition0101 mathematicsFinite setMathematics::Symplectic Geometry[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Mathematics010102 general mathematicsMathematical analysisMathematics::Geometric Topology3-manifoldsProduct (mathematics)010307 mathematical physicsGeometry and TopologyDiffeomorphismOrbit (control theory)
researchProduct

The index of stable critical points

2002

Abstract In this paper we show that in dimension greater or equal than 3 the index of a stable critical point can be any integer. More concretely, given any k∈ Z and n⩾3 we construct a C ∞ vector field on R n with a unique critical point which is stable (in positive and negative time) and has index equal to k. This result extends previous ones on the index of stable critical points.

CombinatoricsVector fieldPlug constructionIsolated critical pointVector fieldGeometry and TopologyTopologyStabilityCritical point (mathematics)MathematicsIndexTopology and its Applications
researchProduct

A C1-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources

2003

We show that, for every compact n-dimensional manifold, n > 1, there is a residual subset of Diff (M) of diffeomorphisms for which the homoclinic class of any periodic saddle of f verifies one of the following two possibilities: Either it is contained in the closure of an infinite set of sinks or sources (Newhouse phenomenon), or it presents some weak form of hyperbolicity called dominated splitting (this is a generalization of a bidimensional result of Mafine [Ma3]). In particular, we show that any Cl-robustly transitive diffeomorphism admits a dominated splitting.

Pure mathematicsClass (set theory)Infinite setMathematics::Dynamical SystemsGeneralizationMathematical analysisClosure (topology)ManifoldMathematics (miscellaneous)DiffeomorphismHomoclinic orbitStatistics Probability and UncertaintySaddleMathematicsAnnals of Mathematics
researchProduct

Flots de Smale en dimension 3: présentations finies de voisinages invariants d'ensembles selles

2002

Abstract Given a vector field X on a compact 3-manifold, and a hyperbolic saddle-like set K of that vector field, we consider all the filtering neighbourhood of K: by such, we mean any submanifold which boundary is tranverse to X, the maximal invariant of which is equal to K and which intersection with every orbit of X is connected. Up to topological equivalence, there is only a finite number of such neighbourhoods. We give a finite combinatorial presentation of the global dynamics on any such neighbourhood. A key step is the construction of a unique model of the germ of X along K; this model is, roughly speaking, the simplest three-dimensional manifold and the simplest Smale flow exhibitin…

Axiom ACombinatoricsStructural stabilitySmale flowsGermVector fieldGeometry and TopologyInvariant (mathematics)SubmanifoldHyperbolic dynamicsFinite setTopological equivalenceMathematicsTopology
researchProduct

Transitive partially hyperbolic diffeomorphisms on 3-manifolds

2005

Abstract The known examples of transitive partially hyperbolic diffeomorphisms on 3-manifolds belong to 3 basic classes: perturbations of skew products over an Anosov map of T 2 , perturbations of the time one map of a transitive Anosov flow, and certain derived from Anosov diffeomorphisms of the torus T 3 . In this work we characterize the two first types by a local hypothesis associated to one closed periodic curve.

Discrete mathematicsTransitive relationPure mathematicsMathematics::Dynamical Systems010102 general mathematics05 social sciencesSkewTorus01 natural sciencesMathematics::Geometric TopologyFlow (mathematics)Structural stability0502 economics and businessAnosov diffeomorphismGeometry and Topology0101 mathematicsMathematics::Symplectic Geometry050203 business & managementMathematicsTopology
researchProduct

Hyperbolicity as an obstruction to smoothability for one-dimensional actions

2017

Ghys and Sergiescu proved in the $80$s that Thompson's group $T$, and hence $F$, admits actions by $C^{\infty}$ diffeomorphisms of the circle . They proved that the standard actions of these groups are topologically conjugate to a group of $C^\infty$ diffeomorphisms. Monod defined a family of groups of piecewise projective homeomorphisms, and Lodha-Moore defined finitely presentable groups of piecewise projective homeomorphisms. These groups are of particular interest because they are nonamenable and contain no free subgroup. In contrast to the result of Ghys-Sergiescu, we prove that the groups of Monod and Lodha-Moore are not topologically conjugate to a group of $C^1$ diffeomorphisms. Fur…

Pure mathematicsMathematics::Dynamical Systems[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Group Theory (math.GR)Dynamical Systems (math.DS)Fixed pointPSL01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]57M60Homothetic transformationMathematics::Group Theorypiecewise-projective homeomorphisms0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsMathematics::Symplectic GeometryMathematicsreal37C85 57M60 (Primary) 43A07 37D40 37E05 (Secondary)diffeomorphismsPrimary 37C85 57M60. Secondary 43A07 37D40 37E0543A07Group (mathematics)37C8537D40010102 general mathematicsMSC (2010) : Primary: 37C85 57M60Secondary: 37D40 37E05 43A0737E0516. Peace & justiceAction (physics)hyperbolic dynamicsrigidityc-1 actionsbaumslag-solitar groupshomeomorphismslocally indicable groupPiecewiseInterval (graph theory)010307 mathematical physicsGeometry and TopologyTopological conjugacyMathematics - Group Theoryintervalgroup actions on the interval
researchProduct

Flexible periodic points

2014

We define the notion of ${\it\varepsilon}$-flexible periodic point: it is a periodic point with stable index equal to two whose dynamics restricted to the stable direction admits ${\it\varepsilon}$-perturbations both to a homothety and a saddle having an eigenvalue equal to one. We show that an ${\it\varepsilon}$-perturbation to an ${\it\varepsilon}$-flexible point allows us to change it to a stable index one periodic point whose (one-dimensional) stable manifold is an arbitrarily chosen $C^{1}$-curve. We also show that the existence of flexible points is a general phenomenon among systems with a robustly non-hyperbolic two-dimensional center-stable bundle.

Pure mathematics37C29 37D30Applied MathematicsGeneral MathematicsBundlePhenomenonFOS: MathematicsDynamical Systems (math.DS)Mathematics - Dynamical SystemsMathematicsErgodic Theory and Dynamical Systems
researchProduct

Topological classification of gradient-like diffeomorphisms on 3-manifolds

2004

Abstract We give a complete invariant, called global scheme , of topological conjugacy classes of gradient-like diffeomorphisms, on compact 3-manifolds. Conversely, we can realize any abstract global scheme by such a diffeomorphism.

Discrete mathematicsPure mathematicsMathematics::Dynamical SystemsTopological classificationTopological classificationGeometry and TopologyDiffeomorphismInvariant (mathematics)Topological conjugacyMathematics::Symplectic GeometryMorse–Smale diffeomorphismsMathematics3-manifoldsTopology
researchProduct

Champs de vecteurs analytiques commutants, en dimension 3 ou 4: existence de zeros communs

1992

One proves the existence of a common zero for any two ℝ-analytic commuting vector fields on a 4-dimensional manifold with not zero Euler characteristic. A local version of this result remains true on 3-manifolds.

symbols.namesakeGeneral MathematicsEuler characteristicMathematical analysisZero (complex analysis)symbolsVector fieldManifoldMathematicsBoletim da Sociedade Brasileira de Matem�tica
researchProduct

Existence de points fixes enlacés à une orbite périodique d'un homéomorphisme du plan

1992

Let f be an orientation-preserving homeomorphism of the plane such that f-Id is contracting. Under these hypotheses, we establish the existence, for every periodic orbit, of a fixed point which has nonzero linking number with this periodic orbit.

55M20 54H20Surfaces homeomorphismsPlane (geometry)Applied MathematicsGeneral Mathematics010102 general mathematics[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Linking numberFixed pointLinking numbers01 natural sciencesHomeomorphism010101 applied mathematicsCombinatoricssymbols.namesakesymbolsPeriodic orbitsPeriodic orbitsAstrophysics::Earth and Planetary AstrophysicsMathematics - Dynamical Systems0101 mathematicsMSC : 55M20 54H20Mathematics
researchProduct

The centralizer of a C1 generic diffeomorphism is trivial

2007

In this announcement, we describe the solution in the C1 topology to a question asked by S. Smale on the genericity of trivial centralizers: the set of diffeomorphisms of a compact connected manifold with trivial centralizer residual in Diff^1 but does not contain an open and dense subset.

Mathematics::Dynamical Systems[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]FOS: Mathematics[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical SystemsMathematics::Geometric TopologyMathematics::Symplectic Geometry
researchProduct

A mechanism for ejecting a horseshoe from a partially hyperbolic chain recurrence class

2022

We give a $C^1$-perturbation technique for ejecting an a priori given finite set of periodic points preserving a given finite set of homo/hetero-clinic intersections from a chain recurrence class of a periodic point. The technique is first stated under a simpler setting called Markov iterated function system, a two dimensional iterated function system in which the compositions are chosen in Markovian way. Then we apply the result to the setting of three dimensional partially hyperbolic diffeomorphisms.

37B25 37D30 37G35FOS: Mathematics[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical Systems
researchProduct

Aperiodic chain recurrence classes of $C^1$-generic diffeomorphisms

2022

We consider the space of $C^1$-diffeomorphims equipped with the $C^1$-topology on a three dimensional closed manifold. It is known that there are open sets in which $C^1$-generic diffeomorphisms display uncountably many chain recurrences classes, while only countably many of them may contain periodic orbits. The classes without periodic orbits, called aperiodic classes, are the main subject of this paper. The aim of the paper is to show that aperiodic classes of $C^1$-generic diffeomorphisms can exhibit a variety of topological properties. More specifically, there are $C^1$-generic diffeomorphisms with (1) minimal expansive aperiodic classes, (2) minimal but non-uniquely ergodic aperiodic c…

FOS: Mathematics[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical Systems37C20 37D30 57M30
researchProduct